从最近的一件事情再理解智能体

  最近在日常生活里跑了一个对我来说很少跑的业务流程。引发我对大模型,智能体的思考。故事先从大模型说起。

大模型出来之后,我很快意识到自己是没法去搞大模型本身的。这个认识其实在几年前我就有了。那时候 AI 刚起,我还花了半年时间去学了深度学习啥的,当时我记得有好多书,是专门给码农看的,什么线性代数啥的。其实读书的时候,我的线性代数,矩阵论都几乎是满分。但直觉告诉自己,这玩意应该不是我的菜。AI 这些个算法,模型都得需要那些天才或者高智商博士才能做的。并且,结合当时在银行的经历,AI 四小龙不也得跑来和银行的业务人员讨论如何在具体的业务场景中发挥 AI 的价值么?

所以,大模型刚起的时候,周围人一股脑去搞大模型,我没有动摇,而是想,不如搞好业务场景,让 AI 加持我的业务。当时读了一篇公众号文章,里边提到AI 和产品的关系如下图:

我们业务功能和 AI 的关系一直是 AI-by Side偶尔是 AI-InSide。大部分情况下,没有 AI能力,其他的业务功能也正常工作。在我们业务系统中,AI 对我们来说就是做个图片识别,语音转文字,自然语言理解。如果本地没有,就走云上(这种情况下,AI 服务完全就变成云端调用了)。比如科大讯飞很早就在云上搭建了 AIUI 技能库,我们用的也挺爽。下图是  我们AI-By Side /AI-Inside的系统架构示意图

图中,AI 服务如果本地硬件支持,我们就走本地,否则就走云上。

而大模型出来之后,我们最直观的感受(对我们业务系统而言),之前需要在 AIUI 上配置的话术似乎不再需要了。大模型确实能更好地理解人类的语言,能解析出人的意图。但是我们业务系统并不需要和大模型聊天,而更有价值的地方在于可以通过聊天的方式让业务系统完成用户的需求。而这并不是大模型的能力。这就需要引入另外一个更高层次的模块——所谓的智能体。

在上面的架构中,智能体是南北向交互的中枢。一方面,它了解业务系统的能力,知道系统有什么数据,如何获取。发散一下,我们做这个智能体的时候,当时也没有 MCP。但现在看,大家的痛点一样,相同的业务功能却有着不一样的接入协议(比如地图),智能体去适配各家业务显然成本太高,所以搞出了 MCP。下图是有 MCP 和没有 MCP 的对比示意。MCP 出来后,整体系统的主动权进一步集中到了智能体手上。

我们当时做了一个 text2Sql 的演示,将用户的自然语言的查询转换成对应业务功能某个数据库的具体的 sql 查询语句。比如,用户说我想看去年和女儿的照片。当时的情况是,很多大模型不知道去年是哪一年,我们适配了好几个大模型,各种提示词。另外,大模型也不知道我是谁,女儿是谁。这些都是业务系统的知识。显然,这个 case 中,智能体是相当的Know-how.

现在结合上文提到的最近办的一个业务—汽车过户来继续说一下生活中的类似场景。整个过户流程,开始很焦虑,不知道咋办,到处找人问,包括问 deepseek。但最后朋友推荐了一个专门办这个的中介(很明显,这哥们就是智能体,而且是高度垂直领域的)。

整个流程开始,他告诉我要带什么东西。我准备好后发给他确认没问题。然后约了时间点去车管所。剩下就是看他在执行整个流程。我坐在边上观察。很放心。因为我现场看着他在跑。更让我惊讶的是,当时大厅里有好几个中介都在跑腿干类似的事情。亲自跑流程的非中介感觉几乎没有。

生活中有太多需要这样中介的地方了。这些中介可能自身能力并不强(相当于小模型,打不过通用大模型),但是他们对业务流程很清楚,能快速完成任务,并且,如果有问题,还能承担责任(比如,当时有个东西没有给我,后面他闪送给了我),让甲方放心(可观测性高,不会瞎搞--我之前也找过另外一个中介,那个中介说全程不用本人参与,但我担心身份证被盗用,所以选择了这种观察性更强的中介)。

其实公司里,这种烦人的流程里也存在。比如报销。每次报销都感觉特别麻烦(其实可能也不算麻烦,但因为好几个月才可能报一次,之前报销的经验并没有积累下来,所以每次报销都等于重新开局,心里上觉得成本较大)。

这个事情引出一个新的图,就是我们怎么和 智能体交互的。

左边第一个流程是我日常工作中的常态,我经常用大模型来写代码。多说一句,o3的代码质量确实远高于GPT-4o,叹为观止可以说。但是 o3消耗积分有点多,不到万不得已轻易不用。这种模式下,其实人类会去兜底。比如 o3因为上下文记忆长度问题,有些代码错误(往往是调用方法已经不是最新 API 推荐的方式)会经常犯,也经常记不住我的数据库 schema(需要隔一段时间提醒一次)

使用智能体最理想模式应该是最后一种,以我刚才实际生活中的例子来说,那个中介有问题就会找我,我全程观察和监督,最后完成了整个任务。全过程下来我很轻松,比我预想的要高效顺畅多了。

所以,总结下来

  • 大模型和智能体是两个层面的东西。我们未来更多打交道的可能是智能体。

  • 智能体不是简单的调用大模型去理解,去输出,而是要工程化的帮人类实实在在完成任务。从用户角度来说,我们信任智能体输出的结果。显然,垂域有太多 know-how。通用大模型去搞这个得不偿失,而专有模型+好的智能体才能真正发挥出价值。对我们没有能力从事基座大模型开发,算法开发的人来说。下一个金矿可能就在一个垂直场景里。这里最关键是要有业务或者说领域知识。

  • 搜索可能确实会被替代。

最后的最后

  • 我期望的结果不是朋友们从我的书、文章、博客后学会了什么知识,干成了什么,而应该是说,神农,我可是踩在你的肩膀上的喔。

  • 关于学习方面的问题,我已经讨论完了。后面这个公众号将对一些基础的技术,新技术做一些学习和分享。也欢迎你的投稿。不过,正如我在公众号“联系方式”里说的那样——郑渊洁在童话大王《智齿》里有一句话令我印象深刻,大意是“我有权保持沉默,但你说的每一句话都可能成为我灵感的源泉”。所以,影响不是单向的,很可能我从你那学到的东西更多。

神农和朋友们的杂文集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值