通信原理学习笔记2-2:复信号分析(复信号与负频率、Hilbert变换获得正半频谱、单边带SSB调制原理)

本文深入探讨了复信号的概念及其与负频率的关系,通过数学推导介绍了如何利用Hilbert变换提取信号的正频率部分,并生成解析信号。此外,还详细讲解了基于解析信号的单边带调制(SSB)技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复信号与负频率

首先要明确,复信号实际不存在,一切复信号只存在于理论分析中,实际传输复信号需要两路实信号,利用频谱的特性甚至可以只传输一路带通实信号(IQ调制)

  • 复信号携带两路独立正交的实变量(可以是实部/虚部,也可以是幅度/相位)
  • 复数应视为复平面上的向量(对于IQ调制,就是信号向两路正交波形基投影所得二维坐标点),复指数时变信号视为复平面上的旋转向量(这里特指傅立叶变换中的复指数信号,对应了某个特定频率的正弦周期信号);
    实信号视为复信号的实轴投影,正弦信号视为复指数信号的实投影
  • 因此,可以认为复信号是对实信号的“降维打击”
    复指数ejωte^{j\omega t}ejωt全面反映了二维平面上旋转运动的幅度/相位/角速度/方向(顺/逆时针);
    cos(ωt)=cos(−ωt)cos(\omega t)=cos(-\omega t)cos(ωt)=cos(ωt)丢失了旋转方向的信息(不能确定顺/逆时针)

复指数ejωte^{j\omega t}ejωt带来了负频率

  • ejωte^{j\omega t}ejωt的总相位θ=ωt\theta=\omega tθ=ωt描述了其在单位圆上所处的位置
  • 角频率ω=dθdt\omega=\frac{d \theta}{dt}ω=dtdθ描述了总相位的变化率,因此频率的正负代表旋转向量ejωte^{j\omega t}ejωt旋转方向(顺/逆时针)

实信号频谱的共轭对称性和冗余性

由此可知,实信号的频谱,一定是正负频率共轭对称的(这样不同旋转方向的旋转向量才能抵消虚部分量)
然而,正频率和负频率部分(对于实信号投影而言)承载相同信息,存在冗余,复信号则有可能只占用正频率(负频率),我们将带通实信号的负半边冗余频谱去掉,即可得到实带通信号的解析信号(是一个复信号),下面介绍如何获得解析信号

如何获得解析信号(只含正频率的频谱)

想要从实信号的对称频谱中,提取出正频率部分,直观上就是用阶跃函数“截取”频谱的正半部分;
「阶跃函数」的频谱u⁡(x)={1x>012x=00x<0\operatorname{u}(x)=\left\{\begin{array}{ll} 1 & x>0 \\ \frac{1}{2} & x=0 \\ 0 & x<0 \end{array}\right.u(x)=1210x>0x=0x<0,这需要借助Hilbert变换产生
在这里插入图片描述

Hilbert变换

Hilbert变换对应一个系统

  • 时域上,其冲激响应为h(t)=1πth(t)=\frac{1}{\pi t}h(t)=πt1(在零点处可以认为h(t)∣t=0=0h(t)|_{t=0}=0h(t)t=0=0
    在这里插入图片描述

  • 频域上,Hilbert变换不改变各频率成分的幅值(直流除外),只是将正频率相移−π2-\frac{\pi}{2}2π,将负频率相移π2\frac{\pi}{2}2π,其频率特性为:H(ω)={−jω>00ω=0jω<0H(\omega)=\left\{\begin{array}{ll} -\mathrm{j} & \omega>0 \\ 0 & \omega=0 \\ \mathrm{j} \quad & \omega<0 \end{array}\right.H(ω)=j0jω>0ω=0ω<0
    在三维频谱(二维复平面+一维频率)上,这相当于原信号x(t)x(t)x(t)与Hilbert变换后的信号x^(t)\hat x(t)x^(t)正交,从而形成两个“基”

需要注意的是, Hilbert变换是一个非因果系统(输出取决于过去和未来的输入),多存在于理论中,难以真正实现
在时域上实现需要缓存一段时间的输入,才能得到输出,在模拟域实现困难;
在频域上实现则需要对于所有不同频率成分都相移90°,也难以实现(如果只有一个频率,则对信号延时1/4个周期即可相移90°;但如果有多个频率,就需要单独对不同频率成分做不同的延时,最后再把不同频率成分叠加)

Hilbert变换的频率响应中有因子“jjj”,故Hilbert变换常常需要与另一个因子“jjj”搭配使用,使正负频率反号,其频谱为「符号函数F[jπt]=jH(ω)=Sgn(ω)={1ω>00ω=0−1ω<0\mathscr{F}[\frac{j}{\pi t}]=jH(\omega)=Sgn(\omega)=\left\{\begin{array}{ll} 1 & \omega>0 \\ 0 & \omega=0 \\ -1 \quad & \omega<0 \end{array}\right.F[πtj]=jH(ω)=Sgn(ω)=101ω>0ω=0ω<0进一步,我们可以产生「阶跃函数」的频谱:F[δ(t)+jπt]=1+jH(ω)=1+Sgn(ω)=2u⁡(ω)={2ω>01ω=00ω<0\mathscr{F}[\delta(t)+\frac{j}{\pi t}]=1+jH(\omega)=1+Sgn(\omega)=2\operatorname{u}(\omega)=\left\{\begin{array}{ll} 2 & \omega>0 \\ 1 & \omega=0 \\ 0 & \omega<0 \end{array}\right.F[δ(t)+πtj]=1+jH(ω)=1+Sgn(ω)=2u(ω)=210ω>0ω=0ω<0

jx^(t)j\hat x(t)jx^(t)与原信号x(t)x(t)x(t)叠加,从而可以构造只含正频率的复信号

小结:

  • Hilbert变换常常需要与因子“jjj”搭配使用,使正负频率反号
    例如直接乘以jjj,或乘以sinωtsin\omega tsinωt从而在频域乘以jjj
  • Hilbert变换的用途,与“提取频谱的一半”有关,具体而言就是 提取对称频谱的正频率部分
    例如用于产生解析信号、SSB上下边带信号
  • Hilbert变换是非因果系统,多存在于理论中,难以真正实现

解析信号:从实信号的对称频谱中提取出正频率部分

根据上面的原理,可以提取x(t)x(t)x(t)的对称频谱X(ω)X(\omega)X(ω)的正频率部分X+(ω)X_+(\omega)X+(ω)
若原来的实信号为x(t)x(t)x(t),经过Hilbert变换后得到实信号x^(t)=x(t)∗1πt=1π∫−∞∞x(τ)t−τdτ\hat x(t)=x(t)*\frac{1}{\pi t}=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} \mathrm{d} \taux^(t)=x(t)πt1=π1tτx(τ)dτ
那么在频域上看,X+(ω)=2X(ω)u(ω)=X(ω)[1+jH(ω)]X_+(\omega)=2X(\omega)u(\omega)=X(\omega)[1+jH(\omega)]X+(ω)=2X(ω)u(ω)=X(ω)[1+jH(ω)]
在时域上看,x+(t)=F−1[2X(ω)u(ω)]=x(t)∗F−1[2u(ω)]=x(t)∗[δ(t)+jπt]=x(t)+jx^(t)\begin{aligned}x_{+}(t) &=\mathscr{F}^{-1}[2 X(\omega) u(\omega)] \\ &=x(t) * \mathscr{F}^{-1}[2 u(\omega)] \\ &=x(t) * [\delta(t)+\frac{\mathrm{j}}{\pi t}]\\ &=x(t)+j\hat x(t)\end{aligned}x+(t)=F1[2X(ω)u(ω)]=x(t)F1[2u(ω)]=x(t)[δ(t)+πtj]=x(t)+jx^(t)

综上,从实信号x(t)x(t)x(t)的正负对称频谱X(ω)X(\omega)X(ω)中,提取出正频率部分的方法如下(其中下标+++代表频谱只含正频率部分):x+(t)=x(t)+jx^(t)x_{+}(t)=x(t)+j\hat x(t)x+(t)=x(t)+jx^(t)
x+(t)x_{+}(t)x+(t)是一个复信号,其「频谱X+(ω)X_+(\omega)X+(ω)只有原频谱正频率部分,且幅值变为2倍」,称为解析信号/预包络
在这里插入图片描述

在频域上理解:

  • x+(t)=x(t)+jx^(t)x_{+}(t)=x(t)+j\hat x(t)x+(t)=x(t)+jx^(t)是一个系统,它将x(t)x(t)x(t)的频谱截取正半部分(频域响应就是阶跃函数
  • jx^(t)j\hat x(t)jx^(t)的频谱「正频率不变,复频率反号」,jx^(t)j\hat x(t)jx^(t)与原信号x(t)x(t)x(t)叠加,即可得到只含正频率的信号

应用:相移法进行单边带调制SSB

在这里插入图片描述

上/下边带调制原理:
sUSB(t)=Ac2Re{[x(t)+jx^(t)]ej2πfct}=Ac2[x(t)cos2πfct−x^(t)sin2πfct]s_{USB}(t)=\frac{A_c}{2}Re\{[x(t)+j\hat x(t)]e^{j2\pi f_ct}\}=\frac{A_c}{2}[x(t)cos2\pi f_ct-\hat x(t)sin2\pi f_ct]sUSB(t)=2AcRe{[x(t)+jx^(t)]ej2πfct}=2Ac[x(t)cos2πfctx^(t)sin2πfct]sLSB(t)=Ac2Re{[x(t)−jx^(t)]ej2πfct}=Ac2[x(t)cos2πfct+x^(t)sin2πfct]s_{LSB}(t)=\frac{A_c}{2}Re\{[x(t)-j\hat x(t)]e^{j2\pi f_ct}\}=\frac{A_c}{2}[x(t)cos2\pi f_ct+\hat x(t)sin2\pi f_ct]sLSB(t)=2AcRe{[x(t)jx^(t)]ej2πfct}=2Ac[x(t)cos2πfct+x^(t)sin2πfct]
对第一个等号的理解(以USB为例):对信号x(t)x(t)x(t)取正频率部分,搬移至载频,然后用Re[⋅]Re[\cdot]Re[]使频谱正负对称
对第二个等号的理解:x(t)x(t)x(t)上变频,与[正负频率反号+上变频]的x^(t)sin2πfct\hat x(t)sin2\pi f_ctx^(t)sin2πfct部分叠加,在载频处抵消了下边带
在这里插入图片描述

解调方法:直接下变频后低通滤波即可,接收信号为r(t)=s(t)cos⁡(ωct)−s^(t)sin⁡(ωct)r(t)=s(t) \cos \left(\omega_{c} t\right)-\hat{s}(t) \sin \left(\omega_{c} t\right)r(t)=s(t)cos(ωct)s^(t)sin(ωct),则解调为LPF[r(t)cos⁡(ωct)]=LPF{s(t)1+cos⁡(2ωct)2−s^(t)sin⁡(2ωct)2]}=12s(t)LPF[r(t) \cos \left(\omega_{c} t\right)]=LPF\{s(t) \frac{1+\cos \left(2 \omega_{c} t\right)}{2}-\hat{s}(t) \frac{\sin \left(2 \omega_{c} t\right)}{2}]\}=\frac{1}{2}s(t)LPF[r(t)cos(ωct)]=LPF{s(t)21+cos(2ωct)s^(t)2sin(2ωct)]}=21s(t)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值