在异物检测项目中,针对检测出的目标,往往需要根据其大小来触发不同级别的预警。传统的物体大小检测通常通过分割算法来计算目标的像素面积。然而,在使用YOLOv5等目标检测网络时,由于其只提供锚框而非目标的精确边界,无法直接得到分割结果。本文将分享如何通过计算YOLOv5检测出的锚框大小,实现粗略的异物检测分级预警功能。
1. YOLOv5目标检测简介
YOLOv5(You Only Look Once, Version 5)是一种高效的实时目标检测网络,它能够在视频或图像中快速识别多个目标,并提供每个目标的类别、置信度和边界框(锚框)。由于YOLOv5采用的是回归方式,直接预测目标的边界框,并不涉及像素级的分割。因此,若要实现基于目标大小的检测分级,就需要通过锚框的尺寸来粗略判断目标的实际面积。
2. 如何通过锚框计算目标大小
在YOLOv5的检测结果中,每个目标的输出包括左上角坐标 (x1, y1)
和右下角坐标 (x2, y2)
,表示锚框的边界。我们可以通过修改detect.py文件中的代码展示锚框的坐标。文件中搜索write results进行定位。
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
# 分级预警
c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
label = '%s %.2f' % (names[int(cls)], conf)
area = (c2[0] - c1[0]) * (c2[1] - c1[1])
print(label + " " + str(area))
if area < 5000:
print("轻微撕裂")
elif 5000 < area < 5800:
print("一般撕裂")
else:
print("严重撕裂")
#
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
代码中c1和c2分别是左上角和右下角坐标点,其中判定的风险等级,也需要根据自己的实际情况进行设置阈值。
3. 应用场景
通过这种基于锚框大小的分级预警,您可以将其应用于以下场景:
- 工业检测:监控生产线上的异物,判断异物大小并根据不同级别采取相应的应急措施;
- 安全监控:在公共场所或生产环境中,监测危险物体的大小,触发分级的报警系统;
- 自动驾驶:判断路面或周围环境中的潜在障碍物,针对不同大小的障碍物采取不同的驾驶策略。
4. 总结
本文通过计算YOLOv5输出的锚框面积,展示了如何实现基于目标大小的分级预警功能。虽然YOLOv5没有提供目标分割的功能,但通过锚框大小的计算,我们可以粗略地评估目标的实际尺寸,进而触发不同级别的预警。这种方式适用于需要快速判断目标大小并进行响应的场景。
在实际项目中,您可以根据需要进一步调整预警阈值,或结合其他检测手段,提升检测精度和报警系统的可靠性。
希望这篇博客能够帮助到正在开发异物检测项目的你。如果有更多问题或需要进一步优化的建议,欢迎留言讨论