Unet 3+: A full-scale connected unet for medical image segmentation
论文:Unet 3+: A full-scale connected unet for medical image segmentation
作者:Huimin Huang、Lanfen Lin、Ruofeng Tong、Hongjie Hu、, Qiaowei Zhang、Yutaro Iwamoto、Xianhua Han、*Yen-Wei Chen、Jian Wu
3.论文代码地址:github.com/ZJUGiveLab/UNet-Version
一、论文框架概述
基于深度学习的语义分割被应用于医学图像分割,本文Unet 3+网络基于Unet和Unet++提出,Unet 3+网络利用基于全尺度的跳跃连接以及深度监督改进网络,并在肝脏、脾脏数据集上实验。
二、试验方法
a、b、c分别是Unet、Unet++、Unet 3+的概略图,从图片中可以看出Unet 3+重新设计了编码器和解码器之间的内部连接以及解码器之间的内部连接,利用全尺度跳跃连接以及深度监督,比起Unet充分利用了图像多尺度特征,又比Unet++减少了参数
1全尺度跳跃连接Full-scale Skip Connections
全尺度跳跃连接指的是将来自不同尺度特征图的低级细节与高级语义结合起来。
上图是特征图 X D 3 e X^3_De XD3e的组成,可以清晰看出 X D 3 e X^3_De XD3e由特征提取、特征融合两大部分组成
特征提取
由上图可知, X E 3 e X^3_Ee XE3e从三个方面进行提取:
1是直接接收来自相同尺度编码器层的特征图 X E 3 e X^3_Ee X