DP专项(一维DP)

本文详细介绍了动态规划在解决最长公共子序列和最长上升子序列问题上的应用,包括基本操作、求解个数、字典序版本以及如何转化为最长上升子序列等,提供了一系列实例和代码解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要是最长公共子序列和最长上升子序列。

目录

一.最长公共子序列

        1.基本操作

         2.求最长公共子序列个数   

                【HAOI2010 Day2】最长公共子序列     

        3.求最长公共子序列(字典序版)

                最长公共子序列(字典序最小版)

                最短包含串

        4.最长公共子序列转最长上升序列

                最长公共子序列(变态版)

二.最长上升子序列                                  

        1.基本操作

                O(n^2)做法

                O(nlog(n))做法

       2. 求方案数

                位置不同

                本质不同

        3.字典序最长上升子序列 

        4.求最长上升子序列中的数

                建图法(但是TLE)

                差分法(智慧的) 

        5.思维题

                通用的0


一.最长公共子序列

        1.基本操作

        问题:给定序列a、b,求a、b的最长公共子序列的长度。

        直接dp[i][j]表示直到a的第i项,b的第j项的最长公共子序列。

        dp[i][j]=max(dp[i][j-1],dp[i-1][j])(a[i]!=b[j])

        dp[i][j]=dp[i-1][j-1]+1(a[i]==b[j])

         2.求最长公共子序列个数   

                【HAOI2010 Day2】最长公共子序列     

问题描述

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列“i0,i1,…,ik-1”,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCBD”是X的一个子序列。
对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。

        设dp[i][j]表示直到a的第i项,b的第j项的最长公共子序列,f[i][j]表示直到a的第i项,b的第j项的最长公共子序列的个数。

        dp[i][j]=max(dp[i][j-1],dp[i-1][j])(a[i]!=b[j])

        dp[i][j]=dp[i-1][j-1]+1(a[i]==b[j])

        f[i][j]=f[i-1][j-1](a[i]==b[j])

        f[i][j]+=f[i-1][j](dp[i][j]==dp[i-1][j])

        f[i][j]+=f[i][j-1](dp[i][j]==dp[i][j-1])

        f[i][j]-=f[i-1][j-1](a[i]!=b[j]&&dp[i-1][j-1]==dp[i][j])

                        

        f的设法很好想,关键是如何去重?

        感性理解一下,如果有(a[i]!=b[j]&&dp[i-1][j-1]==dp[i][j]),那么f[i][j]将加上两次f[i-1][j-1],便需要减去。

        3.求最长公共子序列(字典序版)

                最长公共子序列(字典序最小版)

问题描述

求字符串a和b的最长公共子序列(lcs)。输出字典序最小的方案。

        先求出最长公共子序列的长度,然后凑出字典序最小或最大。因为小写字母总共26个,所以对于ans数组的第i位去枚举放谁(乘上一个26的常数)。

        于是初始化f[i][j]表示自i+1位起到结尾,字母(char)('a'-j+1)第一次出现位置的下标(是一个贪心)。每次枚举到ans的第i位,判断字母j:

                dp[nexta][nextb]>=ans-i?( nexta=f[nowa][j],nextb=f[nowb][j])

        是就转移括号内的,否则j++

代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
using namespace std;
const int N=5e3+5,M=30;
int n,m;
char a[N],b[N],c[N];
int ta[N][M],tb[N][M],dp[N][N];
void init()
{
	for(int i=1;i<=26;i++)
	{
		ta[n+1][i]=N,tb[m+1][i]=N;
		for(int j=n;j>=1;j--)
		{
			ta[j][i]=ta[j+1][i];
			if(a[j]==(char)'a'+i-1)ta[j][i]=j;
		}
		for(int j=m;j>=1;j--)
		{
			tb[j][i]=tb[j+1][i];
			if(b[j]=='a'+i-1)tb[j][i]=j;
		}
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	scanf("%s%s",a+1,b+1);
	for(int i=n;i>=1;i--)
	{
		for(int j=m;j>=1;j--)
		{
			dp[i][j]=max(dp[i+1][j],dp[i][j+1]);
			if(a[i]==b[j])dp[i][j]=dp[i+1][j+1]+1;		
		}
	}
	init();
	int ans=dp[1][1],ax=0,bx=0;
	for(int i=1;i<=ans;i++)
	{
		for(int j=1;j<=26;j++)
		{
			int nax=ta[ax+1][j],nbx=tb[bx+1][j];
			if(nax==N||nbx==N)continue;
			if(dp[nax][nbx]>=ans-i+1)
			{
				ax=nax,bx=nbx;
				c[i]=(char)('a'+j-1);
				break;
			}
		}
	}
	for(int i=1;i<=ans;i++)
	{
		printf("%c",c[i]);
	}
	return 0;
}

        总结:对于求字典序最大或最小问题,dp[i][j]表示自a的i位,b的j位到结尾的最长公共子序列长度大小,方便ans数组的求解(从后往前)。

                最短包含串

问题描述

给定字符串a和b,求最短的字符串s,使得a与b均为s的子序列。

仅求长度太简单了,所以你要找到所有满足条件的s中字典序最小的。   

        同理,只是变了一下。

        求出答案anslen=lena+lenb-dp[1][1]。dp设法同上一道题,倒着存。

代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
using namespace std;
const int N=5e3+5,M=30;
int n,m;
int dp[N][N];
char a[N],b[N],c[2*N];
int main()
{
	scanf("%d%d",&n,&m);
	scanf("%s%s",a+1,b+1);
	for(int i=n;i>=1;i--)
	{
		for(int j=m;j>=1;j--)
		{
			dp[i][j]=max(dp[i][j+1],dp[i+1][j]);
			if(a[i]==b[j])dp[i][j]=dp[i+1][j+1]+1;
		}
	}
	int ax=1,bx=1,len=n+m-dp[1][1];
	for(int i=1;i<=len;i++)
	{	
		if(ax>n)
		{
			for(;bx<=m;bx++)c[i++]=b[bx];
			break;
		}
		if(bx>m)
		{
			for(;ax<=n;ax++)c[i++]=a[ax];
			break;
		}
		if(a[ax]==b[bx])
		{
			c[i]=a[ax];
			ax++,bx++;
		}
		else if(a[ax]<b[bx])
		{
			if((n-ax)+(m-bx+1)-dp[ax+1][bx]<=len-i)c[i]=a[ax++];
			else c[i]=b[bx++];
		}
		else
		{
			if((n-ax+1)+(m-bx)-dp[ax][bx+1]<=len-i)c[i]=b[bx++];
			else c[i]=a[ax++];
		}
	}
	for(int i=1;i<=len;i++)
	{
		printf("%c",c[i]);
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值