堆排序,建初始堆以及优先队列(priority_queue)

本文详细介绍了堆的概念、性质及其应用,包括堆排序算法的实现,并深入探讨了优先队列的基本原理和使用方法,提供了丰富的代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.堆:

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<=K2i+2 ,则称为小堆(或大堆)。

将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
 

性质:

1. 堆中某个节点的值总是不大于或不小于其父节点的值;
2. 堆总是一棵完全二叉树。

2.堆排序和创建初始堆

#include<iostream>

using namespace std;


void HeapAdjust(int r[], int s, int t) {
	//先将现在要调整的根节点的数据和下标记录下来
	int temp = r[s];
	int i = s;

	
	for (int j = 2 * i; j <= t; j = 2 * j) {
		//2*i和2*i+1是下标为i的结点的左右孩子结点的下标,找出其中最大的
        //这里第一个条件要判断的j+1是否越界,写成j<t也行,因为满足条件的最大j为t-1,那么 
        //j+1为t,仍然满足范围。其实把j<t写成j+1<=t的意思是一样的
		if (j < t && r[j] < r[j + 1]) {
			j = j + 1;
		}
		//如果孩子结点中最大的值都没有根节点的值大,那么就不用交换了
		//注意这里一直用的是temp,temp的值在for循环中不会改变
		if (temp > r[j]) {
			break;
		}

		r[i] = r[j];//交换
		i = j;
	}
	r[i] = temp;
}

void HeapSort(int r[], int n) {
	//创建初始堆,从n/2开始是因为第n/2个结点才开始拥有孩子结点
	for (int i = n / 2; i > 0; i--) {
		HeapAdjust(r, i, n);
	}

	for (int i = n; i > 1; i--) {
		r[0] = r[1];
		r[1] = r[i];
		r[i] = r[0];
		HeapAdjust(r, 1, i - 1);
	}
}

int main()
{
	//对1--n范围的数据进行排序,s[0]是作为进行交换数据的位置
	int s[20] = { 0,2,5,4,1,9,6,7,10,15 };

	HeapSort(s, 9);

	for (int i = 1; i <= 9; i++) {
		cout << s[i] << " ";
	}
	return 0;
}

这是我自己改的HeapAdjust函数:

void HeapAdjust(int r[], int s, int t) {
	//先将现在要调整的根节点的数据和下标记录下来
	int temp = r[s];
	int i = s;

	
	for (int j = 2 * i; j <= t; j = 2 * j) {
		//2*i和2*i+1是下标为i的结点的孩子结点的下标,找出其中最大的
		if (j < t && r[j] < r[j + 1]) {
			j = j + 1;
		}
		//如果孩子结点中最大的值都没有根节点的值大,那么就不用交换了
		if (temp > r[j]) {
			break;
		}

		//交换
		r[i] = r[j];
		r[j] = temp;

        i = j;
		temp = r[i];
		
	}
}

3.优先队列(priority_queue)

优先队列(priority_queue)的原理及用法

一、优先队列的原理及使用
std::priority_queue:在优先队列中,优先级高的元素先出队列,并非按照先进先出的要求,类似一个堆(heap)。其模板声明带有三个参数,priority_queue<Type, Container, Functional>, 其中Type为数据类型,Container为保存数据的容器,Functional为元素比较方式。Container必须是用数组实现的容器,比如 vector, deque. STL里面默认用的是vector. 比较方式默认用operator< , 所以如果把后面两个参数缺省的话,优先队列就是大顶堆,队头元素最大。

priority_queue(),默认按照从小到大排列。所以top()返回的是最大值而不是最小值!

使用greater<>后,数据从大到小排列,top()返回的就是最小值而不是最大值!

如果使用了第三个参数,那第二个参数不能省,用作保存数据的容器!!!!

priority_queue<int, greater<>> pq;//这是错误的

priority_queue<int,vector<int> , greater<>> pq;//这是对的


这里再提一嘴,greater<int>与greater<int>() 的区别,这要根据函数原型要求参数是函数对象类型还是要求参数是结构类型。greater<int> 对应于结构的类型,greater< int>()对应于没有参数且返回类型更大的函数的类型。比如multimap中使用不带括号的,sort使用带括号的。

二、基本操作
优先队列在头文件#include <queue>中;

其声明格式为:priority_queue <int> ans;//声明一个名为ans的整形的优先队列

基本操作有:

empty( )  //判断一个队列是否为空

pop( )  //删除队顶元素

push( )  //加入一个元素

size( )  //返回优先队列中拥有的元素个数

top( )  //返回优先队列的队顶元素

优先队列的时间复杂度为O(logn),n为队列中元素的个数,其存取都需要时间。
三、使用方法

#include<iostream>
#include<queue>
using namespace std;

int main()
{
	vector<int> aa = { 1,2,4,3,8,6,1,4 };
	priority_queue<int, vector<int>,greater<>> pq;
	for (int i = 0; i < aa.size(); i++) {
		pq.push(aa[i]);
	}
	sort(aa.begin(), aa.end());
	for (int i = 0; i < aa.size(); i++)
		cout << aa[i];
	cout << endl;
	for (int i = 0; i < aa.size(); i++) {
		cout << pq.top();
		pq.pop();
	}
	//cout << pq << endl;
	system("pause");
	return 0;
}

### C++ `priority_queue` 实现小堆 为了使 `priority_queue` 表现为一个小堆,可以指定第三个模板参数来改变其行为。通常情况下,默认配置下的 `priority_queue<int>` 是一个大堆,即每次调用 `.top()` 方法会返回当前队列中的最大值。 通过调整模板参数,能够创一个小堆: ```cpp #include <queue> #include <functional> // 定义一个小堆 std::priority_queue<int, std::vector<int>, std::greater<int>> minHeap; ``` 上述代码片段展示了如何声明一个基于向量存储的小堆实例[^1]。这里的关键在于第三类模板参数——`std::greater<int>` 的使用,这指定了元素之间的比较逻辑应遵循升序排列规则而不是默认降序。 当往这个特殊类型的 `priority_queue` 中插入新元素时,这些数值会被自动按照从小到大的顺序重新排序;而访问顶部元素则始终能得到目前集合里最小的那个数[^3]。 下面给出一段完整的例子用于展示具体的操作过程: ```cpp #include <iostream> #include <queue> using namespace std; int main() { // 创一个小priority_queue<int, vector<int>, greater<int>> pq; // 向堆中添加一些整数 pq.push(5); pq.push(10); pq.push(1); cout << "The top element is: " << pq.top() << endl; // 输出:"The top element is: 1" while (!pq.empty()) { cout << pq.top() << ' '; pq.pop(); } return 0; } ``` 这段程序首先初始化了一个名为 `pq` 的小堆,并依次加入了三个不同的整数值。之后打印出了堆顶元素(也就是其中最小的一个)。最后遍历整个结构直至为空,在此期间不断输出并移除最前面的项[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值