矩阵快速幂好题。题意:给一个N×K的矩阵A和K×N的矩阵B(4 <= N <= 1000,2 <= K <= 6),算出N×N的矩阵C=A×B,再算出N×N的矩阵M = C^(n×n),最后输出矩阵M每一个元素模6的和。
我的解题思路:矩阵C是N×N的矩阵,而N的值高达1000,因此暴力计算会超时。根据C=A×B,所以C^(n×n) = (A×B)^(n×n)。矩阵乘法满足乘法分配律,所以(A×B)^(n×n) = A×(B×A)^(n×n-1)×B,其中B×A是一个M×M的矩阵,M最多为6,这样就可以避免超时了。
我的解题代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <climits>
#include <algorithm>
using namespace std;
const int N = 1000;
const int M = 6;
const int MOD = 6;
struct matrix
{
int n, m;
int mat[M][M];
matrix(): n(0), m(0) {}
matrix(int nn, int mm): n(nn), m(mm) {}
void Unit(int unit)
{
n = m = unit;
for (int i=0; i<n; ++i)
for (int j=0; j<n; ++j)
mat[i][j] = i == j ? 1 : 0;
}
};
int a[N][M], b[M][N], res[N][N];
int n, m;
void InitRead();
void DataProcess();
matrix MatrixMul(matrix a, matrix b, int mod);
matrix FastPow(matrix base, int n, int mod);
int main()
{
while (~scanf("%d %d", &n, &m) && n && m)
{
InitRead();
DataProcess();
}
return 0;
}
void InitRead()
{
for (int i=0; i<n; ++i)
for (int j=0; j<m; ++j)
scanf("%d", &a[i][j]);
for (int i=0; i<m; ++i)
for (int j=0; j<n; ++j)
scanf("%d", &b[i][j]);
return;
}
void DataProcess()
{
matrix tmp(m, m);
for (int i=0; i<m; ++i) //计算B×A
{
for (int j=0; j<m; ++j)
{
tmp.mat[i][j] = 0;
for (int k=0; k<n; ++k)
{
tmp.mat[i][j] += b[i][k] * a[k][j];
}
tmp.mat[i][j] %= MOD;
}
}
tmp = FastPow(tmp, n * n - 1, MOD); //计算(B×A)^(n×n-1)
int temp[N][M];
for (int i=0; i<n; ++i) //计算A×(B×A)^(n×n-1)
{
for (int j=0; j<m; ++j)
{
temp[i][j] = 0;
for (int k=0; k<m; ++k)
{
temp[i][j] += a[i][k] * tmp.mat[k][j];
}
temp[i][j] %= MOD;
}
}
int sum = 0;
for (int i=0; i<n; ++i) //计算M
{
for (int j=0; j<n; ++j)
{
res[i][j] = 0;
for (int k=0; k<m; ++k)
{
res[i][j] += temp[i][k] * b[k][j];
}
res[i][j] %= MOD;
sum += res[i][j];
}
}
printf("%d\n", sum);
return;
}
matrix MatrixMul(matrix a, matrix b, int mod)
{
matrix ans(a.n, b.m);
for (int i=0; i<a.n; ++i)
{
for (int j=0; j<b.m; ++j)
{
ans.mat[i][j] = 0;
for (int k=0; k<a.m; ++k)
{
ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
ans.mat[i][j] %= mod;
}
}
return ans;
}
matrix FastPow(matrix base, int n, int mod)
{
matrix ans;
ans.Unit(base.n);
while (n)
{
if (n & 1) ans = MatrixMul(ans, base, mod);
base = MatrixMul(base, base, mod);
n >>= 1;
}
return ans;
}