Jzoj4744 同余

本文介绍了一种结合线段树与分块技术的算法实现方案,针对特定规模的数据集进行优化处理。通过预处理和分类讨论的方式,有效地解决了查询问题。对于较小的参数采用预处理方法,而较大的参数则通过暴力枚举来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线段树套分块/主席树!

我们考虑到ai,p,q比较小(<=10000),所以分类讨论

若p较大,则kp+q的数量就比较少,可以暴力枚举

若p较小,可以预处理,令g[i][j]表示膜i余j的数的个数

我们取这个界为sqrt(maxp)=100

将询问放到每个节点上,依次处理处[1,i]的答案最后ans(l,r)=ans(r)-ans(l-1)即可

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct dq{ int p,q,k; }; vector<dq> w[100010];
int f[10010],g[110][100],n,m,s[100010],ans[100010]; 
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i) scanf("%d",s+i);
	for(int l,r,p,q,i=1;i<=m;++i){
		scanf("%d%d%d%d",&l,&r,&p,&q);
		w[l-1].push_back((dq){p,q,i});
		w[r].push_back((dq){p,q,i});
	}
	memset(ans,-1,sizeof ans);
	for(int i=0,A,p,q,k;i<=n;++i){
		f[s[i]]++;
		for(int j=1;j<=100;++j) g[j][s[i]%j]++;
		for(int j=0,z=w[i].size();j<z;++j){
			p=w[i][j].p; q=w[i][j].q; k=w[i][j].k;
			if(p<=100) A=g[p][q];
			else for(A=0;q<=10000;q+=p) A+=f[q];
			if(~ans[k]) ans[k]=A-ans[k]; else ans[k]=A;
		}
	}
	for(int i=1;i<=m;++i) printf("%d\n",ans[i]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值