1、作用
研究两个数值变量之间的关系
2、绘制
plt.scatter(data = df, x = 'num_var1', y = 'num_var2')
#带有回归曲线
sb.regplot(data = df, x = 'num_var1', y = 'num_var2', reg_fit = False)
#指定x轴和y轴的名称
plt.xlabel('')
plt.ylabel('')
sb默认的回归函数是线性回归,如果我们不关心回归线,那么可以在 regplot 函数调用中设置 reg_fit = False
3、透明度和抖动
“alpha” 的值可以介于 0(完全透明,不可见) 到 1(完全不透明)之间
plt.scatter(data = df, x = 'disc_var1', y = 'disc_var2', alpha = 1/5)
抖动:使每个点稍微偏离真实值所对应的位置,可以单独添加 x 轴和 y 轴抖动,不会影响到回归方程的拟合情况,抖动设置将导致每个点在真实值的 ±0.2 范围内抖动
sb.regplot(data = df, x = 'disc_var1', y = 'disc_var2', fit_reg = False,x_jitter = 0.2, y_jitter = 0.2, scatter_kws = {'alpha' : 1/3})
plt.scatter(data = df, x = 'num_var1', y = 'num_var2',alpha=1/3)
4、热点图
cmap = ‘viridis_r’ 可以将默认的 “viridis” 修改为反向的调色板,添加 cmin = 0.5 参数后,只有包含一个数据点以上的单元格才会有颜色
bins_x = np.arange(0.5, 10.5+1, 1)
bins_y = np.arange(-0.5, 10.5+1, 1)
plt.hist2d(data = df, x = 'disc_var1', y = 'disc_var2',bins = [bins_x, bins_y], cmap = 'viridis_r', cmin = 0.5)
#添加色条
plt.colorbar();