使用Delaunay三角剖分的Matlab实现

727 篇文章 ¥39.90 ¥99.00
本文详细介绍了如何在Matlab中利用Delaunay三角剖分算法对二维点集进行三角化。从生成随机点集开始,通过调用内置的delaunay函数进行三角化,然后使用triplot和fill函数展示结果。同时,文章讨论了处理重复点和共线点的方法,并展示了计算三角形面积的示例,为进一步的分析和操作提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Delaunay三角剖分的Matlab实现

Delaunay三角剖分是一种用于将点集拟合成三角形网格的算法。在这个过程中,每个三角形的外接圆不包含任何其他点。这个性质使得Delaunay三角剖分在计算机图形学、数值计算、地理信息系统等领域都有广泛的应用。本文将介绍在Matlab中如何使用Delaunay三角剖分对一个点集进行三角化,并展示三角化结果。

首先,我们需要准备一个二维点集。这里我们随机生成一个包含20个点的点集:

rng(1);
P = rand(20,2);
scatter(P(:,1),P(:,2));

运行上述代码后,我们可以看到点集的分布情况。

接下来,我们使用Matlab自带的Delaunay函数对这个点集进行三角化。代码如下:

triangles = delaunay(P(:,1),P(:,2));

运行这段代码后,我们得到了三角化结果。下面的代码将这些三角形绘制出来:

hold on;
triplot(triangles,P(:,1),P(:,2));

运行上述代码后,我们可以看到点集被成功地三角化了。为了更好地展示三角化的效果,我们可以使用fill函数对三角形进行填充。代码如下:

for i=1:size(triangles
利用delaunay函数划分网格欢迎指点探讨-DelaunayWithGrid.m 本帖最后由 liuf412044725 于 2013-6-8 17:47 编辑 近期论坛上有不少讨论delaunay函数的帖子。似乎主要有以下问题: 1、delaunay函数各参数的意义 2、知道几何边界时,用delaunay函数划分三角形网格由于区域内部没有点,质量很差,怎么改进 3、怎样避免产生过于狭长的delaunay 三角形 4、 凹多边形的情况怎么处理 第1个问题,看看帮助应该能解决。第2个问题,delaunay本来是用来对离散点进行三角剖分,内部没有点时并不合适。除非特别处理。第3个问题,估计是利用delaunay和meshgrid来划网格,边界附近会产生狭长的delaunay 三角形,这个也可以做特别处理。第4个问题,可以用在划分好网格后删掉域外的三角形即可。 由于我也经常使用delaunay来处理背景积分问题,因此仔细琢磨了一下用delaunay来划分已知边界的几何区域的可行方案,在此和大家分享一下,也是抛砖引玉,希望大家有更好的方法。 方案一:先对区域delaunay剖分,删掉域外的三角形,然后将剩下的三角形的边细分,得到新的离散点,然后再次delaunay剖分,然后再次细分边,这样循环下去,直到达到一定的尺寸为止 方案二:利用delaunay和meshgrid函数。将边界细分得到相比原区域边界更加密集边界点,用meshgrid得到包含整个区域的点,将域内的点和边界点一起delaunay 剖分。 讨论: 方案一对于一开始就有很小边界段的情况情况较差,容易出现狭长单元(比如边界有圆弧的话属于这种情况)。还有就是前一步的边界轮廓很清楚,看着别扭。方案二中间的网格能搞保证形状较好。对于边界附近的内部点,容易导致边界单元畸变,可以将离边界太近的点进行删除,这样得到的形状比较好 综合来说,方案二较好,尤其是当删掉离边界太近的内部点。贴出程序,望大家多多指点,共同进步。 P.S. 当然,matlab自身也有很好的网格划分函数,在pdetool中有用到,不过关于几何描述那块比较难以理解(我不是很理解)。另外matlab语言写的划分网格的程序很多,网上可以找到不少很优秀的。这里仅限于简单的使用delaunay来划分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值