【RAG】RAG-MCP:基于检索增强生成来缓解大语言模型工具选择中的提示膨胀问题

摘要

由于提示膨胀和选择复杂性,大型语言模型 (LLM) 难以有效利用越来越多的外部工具,例如模型上下文协议 (MCP)[1]中定义的那些工具。 我们引入了 RAG-MCP,这是一个检索增强生成框架,通过卸载工具发现来克服这一挑战。 RAG-MCP 使用语义检索从外部索引中识别给定查询最相关的 MCP,然后才能使用 LLM。 只有选定的工具描述才会传递给模型,从而大大减少了提示大小并简化了决策过程。 实验(包括 MCP 压力测试)表明,RAG-MCP 显着减少了提示符元(token)(例如,减少了 50% 以上),并且在基准任务上的工具选择准确率提高了三倍多(43.13% 对比基线的 13.62%)。 RAG-MCP 使得 LLM 能够进行可扩展且准确的工具集成。

关键词: 检索增强生成模型上下文协议工具选择

1、引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木亦汐丫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值