摘要
由于提示膨胀和选择复杂性,大型语言模型 (LLM) 难以有效利用越来越多的外部工具,例如模型上下文协议 (MCP)[1]中定义的那些工具。 我们引入了 RAG-MCP,这是一个检索增强生成框架,通过卸载工具发现来克服这一挑战。 RAG-MCP 使用语义检索从外部索引中识别给定查询最相关的 MCP,然后才能使用 LLM。 只有选定的工具描述才会传递给模型,从而大大减少了提示大小并简化了决策过程。 实验(包括 MCP 压力测试)表明,RAG-MCP 显着减少了提示符元(token)(例如,减少了 50% 以上),并且在基准任务上的工具选择准确率提高了三倍多(43.13% 对比基线的 13.62%)。 RAG-MCP 使得 LLM 能够进行可扩展且准确的工具集成。
关键词: 检索增强生成模型上下文协议工具选择