DHU Deep Learning & Practice_章节测验【5】

本文介绍了循环神经网络在自然语言处理中的应用,包括文本理解的基础步骤、词嵌入的特点、情感分析的方法、文本向量化的过程、语音识别的技术细节等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测验5_循环神经网络自然语言处理

【单选题】在使用深度学习进行文本处理时,一个文本句子要被理解,首先需要做的是__。
A、分词\color{FF0000}{A、分词}A
B、词性标注
c、命名实体识别
D、生成词嵌入

【单选题】在经过学习获得的词嵌入空间中,语法和语义上相近的词汇___。
A、距离更远
B、距离更近\color{FF0000}{B、距离更近}B
C、距离为0
D、距离相等

【单选题】要了解消费者对某个产品的总体观点,可以采用___对用户评论进行分析得到。
A、情感分析\color{FF0000}{A、情感分析}A
B、文本对话
C、内容标签
D、自动摘要

【单选题】如果要采用神经网络来对文本进行建模,必须先将文本向量化,这一过程是指_。
A、将文本分词
B、获得文本类别标签
C、将文本压缩
D、将文本转换为数值张量\color{FF0000}{D、将文本转换为数值张量}D

【单选题】自动语音识别(Automatic Speech Recognition,ASR)的目标是从语音信号识别出____.
A、说话者的身份
B、话语中的含义
C、话语对应的文本\color{FF0000}{C、话语对应的文本}C
D、话语的情感极性

【单选题】语音识别中对数据预处理时分帧___。
A、将语音切割为无交叠的等长帧
B、将语音切割为有交叠的等长帧\color{FF0000}{B、将语音切割为有交叠的等长帧}B
C、将语音切割为无交叠的不等长帧
D、将语音切割为有交叠的不等长帧

【单选题】传统语音识别方法中把___做为基本单元,它也是构成单词的基本单位。
A、状态
B、帧
C、字
D、音素\color{FF0000}{D、音素}D

【单选题】语音识别中使用的语言模型─般是___。
A、人工建立的
B、与应用领域无关
C、基于文本数据训练得到\color{FF0000}{C、基于文本数据训练得到}C
D、与语种无关

【多选题】以下___神经网络适合处理序列数据。(【注:本题半对】)
A、LSTM\color{FF0000}{A、 LSTM}ALSTM
B、双向LSTM\color{FF0000}{B、双向LSTM}BLSTM
C、一维CNN
D、二维CNN

【多选题】通过拍照翻译可以将外文菜单、路牌等信息转换为自己熟悉的语言文字,这主要通过__技术实
现。
A、语音识别
B、图像识别\color{FF0000}{B、图像识别}B
C、机器翻译\color{FF0000}{C、机器翻译}C
D、统计分析

【多选题】以下__属于文本处理任务。
A、机器翻译\color{FF0000}{A、机器翻译}A
B、自动摘要\color{FF0000}{B、自动摘要}B
C、自动绘画
D、自动写诗\color{FF0000}{D、自动写诗}D

【判断题】百度搜索引擎不需要使用自然语言处理技术,只需要关键字匹配即可。 (×\color{FF0000}{×}×)
【判断题】预训练词嵌入是使用大规模文本训练得到的词向量,使用它一般可以提高模型性能。(√\color{FF0000}{√})
【判断题】采用深度学习进行语音识别,可以直接实现speech-to-text。(√\color{FF0000}{√})
【判断题】双向循环神经网络对输入数据进行正向和反向两次处理,再合并结果。(√\color{FF0000}{√})
【判断题】在语音识别应用设计时,待识别领域和训练文本的领域具有一致性,可以得到更好的识别效果。(√\color{FF0000}{√})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_fearless

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值