Pytorch模型的存储与加载

本文介绍PyTorch中模型保存与加载的各种方法,包括整个模型、模型参数、检查点及多模型的保存和加载过程,并展示了如何在不同设备间迁移模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.save: 将序列化对象保存到磁盘。此函数使用Python的pickle模块进行序列化。使用此函数可以保存如模型、tensor、字典等各种对象。

torch.load: 使用pickle的unpickling功能将pickle对象文件反序列化到内存。此功能还可以有助于设备加载数据。

torch.nn.Module.load_state_dict: 使用反序列化函数 state_dict 来加载模型的参数字典。


1.state_dict

torch.nn.Module模型的可学习参数(即权重和偏差)包含在模型的参数中,(使用model.parameters()可以进行访问)

print(model.parameters)

state_dict 是Python字典对象,它将每一层映射到其参数张量。注意,只有具有可学习参数的层(如卷积层,线性层等)的模型 才具有 state_dict 这一项。

import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义模型
class TheModelClass(nn.Module):
    def __init__(self):
        super(TheModelClass, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

class SimpleNet(nn.Module):
    def __init__(self,in_put,hindden,out_put):
        super(SimpleNet,self).__init__()
        self.layers1 = nn.Linear(in_put,hindden)

        self.BatchNormal = nn.BatchNorm1d(hindden)
        self.Relu = nn.ReLU(hindden)  # method one
        self.layers2 = nn.Linear(hindden,hindden)
        self.layers3 = nn.Linear(hindden,out_put)

        self.layers4 = nn.Sequential(
            nn.Linear(in_put,hindden),
            nn.BatchNorm1d(hindden),
            nn.ReLU(True),  #method two
            nn.Linear(hindden,hindden),
            nn.Linear(hindden,out_put)
        )
    def forward(self, x):
        x = self.layers1(x)
        x = self.Relu(x)
        x = self.layers2(x)
        x = self.layers3(x)
        x = self.layers4(x)
        return x
# 初始化模型
model = TheModelClass()

# 初始化优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 打印模型的状态字典
print("Model's state_dict:")
for param_tensor in model.state_dict():
    print(param_tensor, "\t", model.state_dict()[param_tensor].size())

# 打印优化器的状态字典
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
    print(var_name, "\t", optimizer.state_dict()[var_name])
Model's state_dict:
conv1.weight     torch.Size([6, 3, 5, 5])
conv1.bias   torch.Size([6])
conv2.weight     torch.Size([16, 6, 5, 5])
conv2.bias   torch.Size([16])
fc1.weight   torch.Size([120, 400])
fc1.bias     torch.Size([120])
fc2.weight   torch.Size([84, 120])
fc2.bias     torch.Size([84])
fc3.weight   torch.Size([10, 84])
fc3.bias     torch.Size([10])

Optimizer's state_dict:
state    {}
param_groups     [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]

2.保存与加载

方式一:保存模型网络结构+参数

torch.save(model,PATH)  #保存

torch.load(PATH)  #加载

方式二:保存网络模型参数

torch.save(model.state_dict(),PATH)

torch.load_state_dict(torch.load(PATH))

load_state_dict()函数只接受字典对象,而不是保存对象的路径。这就意味着在你传给load_state_dict()函数之前,你必须反序列化 你保存的state_dict。例如,你无法通过 model.load_state_dict(PATH)来加载模型。


3.保存和加载 Checkpoint

·保存

torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': loss,
            ...
            }, PATH)

·加载

model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)

checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']

model.eval()
# - or -
model.train()

4.在一个文件中保存多个模型

当保存一个模型由多个 torch.nn.Modules 组成时,例如GAN(对抗生成网络)、sequence-to-sequence (序列到序列模型), 或者是多个模 型融合, 可以采用与保存常规检查点相同的方法。

torch.save({
'modelA_state_dict': modelA.state_dict(),
'modelB_state_dict': modelB.state_dict(),
'optimizerA_state_dict': optimizerA.state_dict(),
'optimizerB_state_dict': optimizerB.state_dict(),
...
}, PATH)
modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)

checkpoint = torch.load(PATH)

modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])

还有一种方式可以表示

model_encoder = torch(PATH)
model_encoder_dict = model_encoder.state_dict()
====》
model.load_state_dict(model_encoder_dict)

5.使用在不同模型参数下的热启动模式

保存

torch.save(modelA.state_dict(), PATH)

加载

modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)

无论是从缺少某些键的 state_dict 加载还是从键的数目多于加载模型的 state_dict , 都可以通过在load_state_dict() 函数中将 strict 参数设置为 False 来忽略非匹配键的函数。


6.通过设备保存/加载模型

保存到 CPU,加载到 GPU

# 保存模型
torch.save(model.state_dict(), PATH)
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose
# whatever GPU device number you want
model.to(device)
# 确保在你提供给模型的任何输入张量上调用input = input.to(device)

在CPU上训练好并保存的模型加载到GPU时,将 torch.load() 函数中的 map_location 参数设置为 cuda:device_id 。这会将模型加载到 指定的GPU设备。

接下来,请务必调用 model.to(torch.device(‘cuda’)) 将模型的参数张量转换为 CUDA 张量。最后,确保在所有模型输入上使用 .to(torch.device(‘cuda’)) 函数来为CUDA优化模型。

请注意,调用 my_tensor.to(device) 会在GPU上返回 my_tensor 的新副本。它不会覆盖 my_tensor 。因此, 请手动覆盖张量 my_tensor = my_tensor.to(torch.device(‘cuda’)) 。


数据集类

torch.utils.data.Dataset 是表示数据集的抽象类,因此自定义数据集应继承Dataset并覆盖以下方法 *__len__实现 len(dataset) 返还数据集的尺寸。 *__getitem__用来获取一些索引数据,例如 dataset[i] 中的(i)。

为面部数据集创建一个数据集类。我们将在 ___init___中读取csv的文件内容,在 __getitem__中读取图片。这么做是为了节省内存 空间。只有在需要用到图片的时候才读取它而不是一开始就把图片全部存进内存里。

class FaceLandmarksDataset(Dataset):
	"""面部标记数据集."""
	def __init__(self, csv_file, root_dir, transform=None):
	"""
	csv_file(string):带注释的csv文件的路径。
	   root_dir(string):包含所有图像的目录。
	    transform(callable, optional):一个样本上的可用的可选变换
	"""
		self.landmarks_frame = pd.read_csv(csv_file)
		self.root_dir = root_dir
		self.transform = transform
	def __len__(self):
		return len(self.landmarks_frame)
	def __getitem__(self, idx):
		img_name = os.path.join(self.root_dir,self.landmarks_frame.iloc[idx, 0])
		image = io.imread(img_name)
		landmarks = self.landmarks_frame.iloc[idx, 1:]
		landmarks = np.array([landmarks])
		landmarks = landmarks.astype('float').reshape(-1, 2)
		sample = {'image': image, 'landmarks': landmarks}
		if self.transform:
			sample = self.transform(sample)
		return sample
### 如何在 PyTorch 中保存和加载模型的最佳实践 #### 保存整个模型 为了同时保存模型的参数和网络结构信息,可以使用 `torch.save` 函数来序列化整个模型对象到磁盘。这方法简单直观,适合小型项目或快速原型开发。 ```python import torch # 假设 'the_model' 是已经训练好的模型实例 PATH = './model.pth' torch.save(the_model, PATH) # 保存模型[^1] ``` 这种方法的优点在于恢复时无需重新定义模型类即可直接加载并使用该模型: ```python # 加载已保存的模型 loaded_model = torch.load(PATH) loaded_model.eval() # 设置为评估模式 ``` 然而,在实际应用中更推荐的做法是仅保存模型的状态字典 (`state_dict`) 而不是完整的模型对象。这种方式更加灵活高效,并且能够更好地处理不同版本之间的兼容性问题。 #### 只保存状态字典 (State Dictionary) 对于只保存模型权重而不包括其架构的情况,则应采用如下方式操作: ```python torch.save(the_model.state_dict(), PATH) # 仅保存模型参数 ``` 当需要再次部署此模型时,先创建一个新的相同类型的未初始化模型实例,再将其状态字典更新为目标文件中的数据: ```python new_model = TheModelClass(*args, **kwargs) # 创建新的模型实例 new_model.load_state_dict(torch.load(PATH)) # 将之前保存的参数赋给新模型 new_model.eval() ``` 这种做法不仅减少了存储空间占用量,还便于迁移学习以及微调预训练过的神经网络。 #### 使用 CUDA 进行加速 如果希望利用 GPU 来加快计算速度,可以在构建模型前设置环境变量 `cudnn.benchmark=True` ,从而让 cuDNN 自动寻找最适合当前硬件配置下的卷积算法实现方案[^2]。 ```python import torch.backends.cudnn as cudnn cudnn.benchmark = True device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) ``` 通过上述措施可有效提升含有大量重复运算任务(如图像分类、目标检测等)的应用程序性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jeremy_lf

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值