【生成模型之七】Classifier-free diffusion guidance

论文:classifier-free diffusion guidance

一、Background

分类器引导是一种最近引入的方法,用于在训练后的条件扩散模型中权衡样本丰富度和样本保真度,其思想与其他类型生成模型中的低温采样或截断相同。

分类器引导将扩散模型的分数估计与图像分类器的梯度相结合,因此需要训练与扩散模型分离的图像分类器。这也提出了一个问题,即是否可以在没有分类器的情况下进行指导。

我们证明,在没有这样的分类器的情况下,引导确实可以通过纯生成模型来执行:在我们所谓的无分类器引导中,我们联合训练一个条件和一个无条件的扩散模型,并将得到的条件和无条件的分数估计结合起来,以实现样本质量和多样性之间的权衡,类似于使用分类器引导获得的结果。

 Diffusion models beat GANs on image synthesis提出了分类器引导,这是一种使用额外训练的分类器来提高扩散模型样本质量的技术。由于分类器引导在采样过程中将分数估计与分类器梯度混合在一起,因此分类器引导的扩散采样可以被解释为试图将图像分类器与基于梯度的对抗攻击混淆。这就提出了一个问题,即分类器指导是否能够成功地提高基于分类器的指标,如FID和Inception分数(is),仅仅是因为它对这些分类器是对抗性的。

为了解决这些问题,我们提出了无分类器引导,我们的引导方法完全避免了任何分类器。无分类器引导不是在图像分类器的梯

<think>嗯,用户现在在找关于Classifier-Free Diffusion Guidance的实现代码示例。首先,我需要确认用户的需求是什么。Classifier-Free Diffusion Guidance是一种在扩散模型中常用的技术,用于提高生成样本的质量和条件控制。用户可能已经了解了一些基础概念,现在需要具体的代码示例来参考。 接下来,我应该回忆一下相关的资源和引用。用户提供的引用中,引用[1]提到了motion-diffusion-model的PyTorch实现,引用[2]是DiT(Diffusion with Transformers)的代码教程,引用[3]则涉及蒸馏和ProgressiveDistillation。虽然这些引用中没有直接提到Classifier-Free Guidance,但可能相关的代码库中会有实现。 首先,我应该考虑常见的扩散模型代码库,比如Hugging Face的Diffusers库,或者OpenAI的代码。Classifier-Free Diffusion Guidance通常通过在条件嵌入和无条件嵌入之间插值来实现。具体来说,在训练时,随机丢弃条件信息,使模型同时学习有条件和无条件的生成。在推理时,通过调整guidance_scale参数来控制条件的影响。 然后,我需要检查Diffusers库是否有相关实现。例如,在Stable Diffusion或DDPM中,通常会使用guidance_scale。用户可能需要一个简单的代码示例,展示如何在采样过程中应用Classifier-Free Guidance。 另外,用户可能对PyTorch实现更感兴趣,因为引用中提到的项目如motion-diffusion-model和DiT都是基于PyTorch的。需要确保代码示例使用正确的框架,并符合常见的实践方式。 还需要注意代码的正确性,比如在计算噪声预测时,如何组合有条件和无条件的预测。通常的做法是计算两个预测值,然后进行加权组合,公式类似:noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)。 同时,应该提醒用户安装必要的依赖库,比如diffusers和transformers,并可能提供训练和推理的代码片段。如果用户需要更详细的实现,可能需要参考具体的GitHub仓库,比如lucidrains的denoising-diffusion-pytorch,或者Hugging Face的文档。 最后,生成相关问题,帮助用户进一步了解如何调整参数、优化性能,以及与其他方法的比较。这有助于用户全面理解Classifier-Free Guidance的应用和实现细节。</think>### Classifier-Free Diffusion Guidance 代码实现示例 Classifier-Free Diffusion Guidance 的核心是通过调节条件嵌入和无条件嵌入的加权差值来控制生成过程[^3]。以下是基于 PyTorch 的实现框架: #### 1. 关键代码逻辑 ```python # 条件与无条件嵌入的插值计算 def guided_noise_pred( model, x, t, cond_input, guidance_scale=7.5, unconditional_prob=0.1 ): # 生成无条件嵌入(随机丢弃条件) if random.random() < unconditional_prob: cond_input = None # 模型预测噪声 noise_pred = model(x, t, cond_input) # 分离条件与无条件预测(推理时) if cond_input is not None and guidance_scale > 1: # 无条件分支 uncond_pred = model(x, t, None) # 线性插值 noise_pred = uncond_pred + guidance_scale * (noise_pred - uncond_pred) return noise_pred ``` #### 2. 完整训练流程(简略版) ```python from diffusers import DDPMScheduler, UNet2DConditionModel model = UNet2DConditionModel(...) scheduler = DDPMScheduler(...) for batch in dataloader: clean_images, conditions = batch noise = torch.randn_like(clean_images) timesteps = torch.randint(0, 1000, (clean_images.shape[0],)) # 应用Classifier-Free训练策略:随机丢弃条件 mask = torch.rand(len(conditions)) < 0.1 # 10%概率丢弃 conditions[mask] = None noisy_images = scheduler.add_noise(clean_images, noise, timesteps) noise_pred = model(noisy_images, timesteps, conditions) loss = F.mse_loss(noise_pred, noise) loss.backward() optimizer.step() ``` #### 3. 依赖安装 ```bash pip install diffusers transformers torch ``` #### 扩展实现参考 - **Hugging Face Diffusers 库**:提供官方实现的 `StableDiffusionPipeline`,通过 `guidance_scale` 参数直接控制[^2] - **lucidrains/denoising-diffusion-pytorch**:包含基础条件扩散模型实现(GitHub) - **Google Resarch 发布的 Imagen**:使用Classifier-Free Guidance进行文本到图像生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jeremy-Sky

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值