论文:Diffusion Models Beat GANs on Image Synthesis
Classifier-free guidance 与Classifier Guidance对比:【扩散模型】7、Classifier-Free Diffusion Guidance | 无需显式分类器指导也能获得很好的生成效果-CSDN博客
一、背景
扩散模型已经在CIFAR-10[37]上拥有最先进的技术,但在LSUN和ImageNet等困难的生成数据集上仍然落后于GAN。我们假设这种差距的存在至少有两个原因:第一,最近GAN使用的模型架构已经过大量探索和改进;其次,GAN能够以多样性换取保真度,产生高质量的样本,但不覆盖整个分布。我们的目标是通过改进模型架构,然后设计一个以多样性换取保真度的方案,将这些好处带给扩散模型。
Song等人提出了DDIM,它提出了一种替代的非马尔可夫噪声处理方法,该方法具有与DDPM相同的前向边缘,但允许通过改变反向噪声的方差来产生不同的反向采样器。通过将此噪波设置为0,它们提供了一种转动任何模型的方法eps(xt,t)转换为从latent到图像的确定性映射,并发现这提供了一种用更少步骤进行采样的替代方法。
DDPM中的UNet模型使用一堆残差层和下采样卷积,然后是一堆具有上采样卷积的残差层,跳跃连接将具有相同空间大