【生成模型之八】Classifier Guidance

论文:Diffusion Models Beat GANs on Image Synthesis

Classifier-free guidance 与Classifier Guidance对比:【扩散模型】7、Classifier-Free Diffusion Guidance | 无需显式分类器指导也能获得很好的生成效果-CSDN博客

一、背景

扩散模型已经在CIFAR-10[37]上拥有最先进的技术,但在LSUN和ImageNet等困难的生成数据集上仍然落后于GAN。我们假设这种差距的存在至少有两个原因:第一,最近GAN使用的模型架构已经过大量探索和改进;其次,GAN能够以多样性换取保真度,产生高质量的样本,但不覆盖整个分布。我们的目标是通过改进模型架构,然后设计一个以多样性换取保真度的方案,将这些好处带给扩散模型。

Song等人提出了DDIM,它提出了一种替代的非马尔可夫噪声处理方法,该方法具有与DDPM相同的前向边缘,但允许通过改变反向噪声的方差来产生不同的反向采样器。通过将此噪波设置为0,它们提供了一种转动任何模型的方法eps(xt,t)转换为从latent到图像的确定性映射,并发现这提供了一种用更少步骤进行采样的替代方法。

DDPM中的UNet模型使用一堆残差层和下采样卷积,然后是一堆具有上采样卷积的残差层,跳跃连接将具有相同空间大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jeremy_lf

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值