【生成模型之十四】Visual Autoregressive Modeling

### 关于CLIP算法的相关文献与学术论文 CLIP(Contrastive Language-Image Pre-training)是由OpenAI提出的一种用于联合训练图像和文本表示的模型。它通过对比学习的方式,在大规模数据集上预训练,从而能够生成高质量的跨模态特征表示[^3]。 以下是关于CLIP算法的一些重要参考文献: #### 1. 原始论文 CLIP的核心思想来源于其原始论文《Learning Transferable Visual Models From Natural Language Supervision》。这篇论文详细介绍了如何利用自然语言监督来构建可迁移的视觉模型,并展示了CLIP在多个下游任务中的卓越性能[^3]。 ```plaintext @article{radford2021learning, title={Learning transferable visual models from natural language supervision}, author={Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and Goh, Gabriel and Agarwal, Sandhini and Sastry, Girish and Askell, Amanda and Mishkin, Pamela and Chen, Jack and others}, journal={International Conference on Machine Learning}, year={2021} } ``` #### 2. 后续研究与发展 除了原始论文外,还有一些后续的研究工作进一步扩展了CLIP的应用场景和技术细节。例如,《Multimodal Neurons in Artificial Neural Networks》探讨了CLIP模型中多模态神经元的行为特性及其潜在意义[^4]。 此外,《Scaling Laws for Autoregressive Generative Modeling》虽然主要关注自回归生成建模的缩放规律,但也涉及到了CLIP作为背景技术的作用,提供了更多理论支持[^5]。 #### 3. 实践应用案例 对于希望了解CLIP实际应用场景的研究者来说,《DALL·E: Creating Images from Text》是一个重要的参考资料。该文档描述了一个基于CLIP的图像生成系统——DALL·E的设计原理及实现方法[^6]。 ```python from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over texts print(probs) ``` 以上代码片段展示了一个简单的例子,说明如何加载并使用预训练好的CLIP模型来进行图像与文本匹配的任务。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jeremy_lf

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值