论文:BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion
代码: https://github.com/TencentARC/BrushNet
类型:inpaint
其他:支持resume修改&面试辅导
一、背景
问题:目前用于绘画的DM改进,包括修改采样策略或开发Inpaint特定DM,经常出现语义不一致和图像质量降低的问题。
方法:我们的工作引入了一种新的范式:将masked图像特征和noisy latent划分为单独的分支。这种划分极大地减少了模型的学习负荷,促进了以分层方式精细地结合基本的掩蔽图像信息。在此,我们介绍了BrushNet,这是一种新型的即插即用双分支模型,旨在将像素级掩模图像特征嵌入任何预训练的DM中,保证连贯和增强的图像修复结果。
Image inpainting它促进了许多应用,如虚拟试穿virtual try-on和图像编辑image editing
常用的基于扩散的文本引导修复方法大致可分为两类:
(1) Sampling strategy modification,采样策略的修改。通过从预训练的扩散模型中采样mask区域来修改标准去噪过程,在每个去噪步骤中,未masked区域只是从给定图像中复制粘贴。虽然它们可以用于任意的扩散主干,但对掩模边界和未掩模图像区域上下文的有限感知知识会导致不连贯的修复结果。
(2)Dedicated inpainting models,专用修复模型。其通过扩展基础扩散模型的输入通道维度来微调专门设计的图像修复模型,以包含提供的损坏图像和掩模。虽然它们使扩散模型能够通过专门的内容感知和形状感知模型产生更令人满意的结果,但我们认为,这种架构最适合基于扩散的修复吗?