Tensorflow 模型保存与恢复(2)使用SavedModel

本文详细介绍了如何使用Tensorflow的SavedModel进行模型的保存和恢复。SavedModel是一种跨语言的序列化格式,允许保存模型变量、图和元数据,便于在不同语言环境中使用。通过为模型添加签名,简化了部署过程。文中还提供了保存和恢复模型的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用SavedModel 保存和恢复模型

本篇介绍使用SavedModel进行模型的保存与恢复。

其他相关:
Tensorflow 模型保存与恢复(1)使用tf.train.Saver()
Tensorflow 模型保存与恢复(3)保存模型到单个文件中

SavedModel 是一种跨语言的序列化格式(protobuf),可以保存和加载模型变量、图和图的元数据,适用于将训练得到的模型保存用于生产环境中的预测过程。由于跨语言的特性,应用时,可以使用一种语言保存模型,如训练时使用Python代码保存模型;使用另一种语言恢复模型,如使用C++代码恢复模型,进行前向推理,提高效率。
·SavedModel·可以为保存的模型添加签名·signature·,用于保存指定输入输出的graph, 另外可以为模型中的输入输出tensor指定别名,这样子使用模型的时候就不必关心训练阶段模型的输入输出tensor具体的name是什么,讲模型训练和部署解耦,更加方便。

1.保存模型

使用SavedModel保存模型时使用tf.saved_model.builder.SavedModelBuilder来实现,实例化一个builder,传入模型保存的路径:

builder = tf.saved_model.builder.SavedModelBuilder(model_path)

确定输入输出dict,这一步可以看成是给模型中的输入输出tensor取一个别名,可以在预测的时候直接使用这个别名,而不必关心其在原本的训练代码中的名字:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值