逻辑斯蒂回归(logistic regression)的梯度下降算法

本文探讨了逻辑回归在分类问题中的应用,解释了它与多重线性回归的关系,并通过sigmoid函数将其转化为概率输出。进一步,文章详细介绍了logistic回归模型,极大似然估计以及梯度下降法在求解模型参数中的应用,最终展示了如何实施随机梯度下降更新规则。

值得注意的是,逻辑回归(logistic regression)解决的是有监督的分类问题,而非回归问题。

分类和回归的区别

分类问题和回归问题的区别在于输出:分类问题的输出是离散型变量,如判断一个人是否得病,只有两种结果:得病或者不得病;而回归问题的输出为连续型变量,如预测一个人五年后的工资,它就可能是一个实数区间内的任意值。

logistic和多重线性回归

实际上,logistic回归和多重线性回归除输出的不同外基本类似,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。因此这两个回归的模型形式基本差不多,都可以简单表示为: y=ΘTXy=\Theta^TXy=ΘTX,只是,logistic回归需要借助sigmoid激活函数,将回归问题转化为分类问题。

sigmoid函数

sigmoid激活函数: g(z)=1(1+e(−z))g(z)=\frac{1} {(1+e^{(-z)})}g(z)=(1+e(z))1
sigmoid激活函数曲线如下:
在这里插入图片描述
由图可以看出,sigmoid函数中z的取值范围为任意实数,g(z)的输出范围为0到1,因此可以将输出看做一个概率值,将回归问题转化为分类问题。
sigmoid函数的一阶导数:
g′(z)=1(1+e−z)2∗(e−z)=11+e−z∗(e−z1+e−z)=11+e−z∗(1−11+e−z)=g(z)(1−g(z))g'(z)=\frac{1} {(1+e^{-z})^2}*(e^{-z})=\frac{1}{1+e^{-z}}*(\frac{e^{-z}}{1+e^{-z}})=\frac{1}{1+e^{-z}}*(1-\frac{1}{1+e^{-z}})=g(z)(1-g(z))g(z)=(1+ez)21(ez)=1+ez1(1+ezez)=1+ez1(11+ez1)=g(z)(1g(z))

logistic回归模型

模型:hθ(x)=g(Θx)=11+e−ΘTxh_\theta(x)=g(\Theta x)=\frac{1}{1+e^{-\Theta^{T}x}}hθ(x)=g(Θx)=1+eΘTx1
因此:
{ P(y=1∣x,Θ)=hθ(x)P(y=0∣x,Θ)=1−hθ(x)\left\{\begin{matrix} P(y=1|x,\Theta )=h_\theta (x) \\P(y=0|x,\Theta ) =1-h_\theta (x) \end{matrix}\right.{ P(y=1x,Θ)=hθ(x)P(y=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值