python代码分析目标跟踪中的卡尔曼滤波

本文介绍了卡尔曼滤波的基本原理及其在目标跟踪中的应用。卡尔曼滤波是一种自回归滤波器,常用于动态系统状态估计,尤其在存在不确定性时。在目标跟踪任务中,卡尔曼滤波通过建模物体运动,有效推测物体下一步位置。文章详细分析了卡尔曼滤波的代码实现,包括初始化、预测、更新等关键步骤,并讨论了其在多目标跟踪中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

1. 什么是卡尔曼滤波

卡尔曼滤波(Kalman filter)是一种高效的自回归滤波器,它能在存在诸多不确定性情况的组合信息中估计动态系统的状态,是一种强大的、通用性极强的工具。它的提出者,鲁道夫.E.卡尔曼,在一次访问NASA埃姆斯研究中心时,发现这种方法能帮助解决阿波罗计划的轨道预测问题,后来NASA在阿波罗飞船的导航系统中确实也用到了这个滤波器。最终,飞船正确驶向月球,完成了人类历史上的第一次登月。
– 引用自以下两个链接(对应中英文链接),第一次了解卡尔曼滤波的同学强烈推荐阅读以下两篇文章。
How a Kalman filter works, in pictures

图说卡尔曼滤波,一份通俗易懂的教程

2. 为什么要用卡尔曼滤波

卡尔曼滤波可以对存在不确定信息的动态系统的下一步的状态进行有根据的推测,即便有噪声信息干扰,卡尔曼滤波通常也能很好的弄清楚究竟发生了什么,找出现象间不易察觉的相关性。

在目标跟踪任务中,卡尔曼滤波可以对物体的运动信息进行建模,通过已有运动轨迹对下一步进行合理有效的估计。

3. 代码分析卡尔曼滤波

共有以下几个步骤
(1)类初始化__init__
(2)初始化状态(mean)与状态协方差(covariance)的函数initiate
(3)预测阶段函数predict
(4)分布转换函数project
(5) 更新阶段函数update
(6) 计算状态分布和测量(检测框)之间距离函数gating_distance

  1. 方法初始化
    在这里插入图片描述

  2. 初始化状态(mean)与状态协方差(covariance)的初始化函数initiate
    根据物理特性 目标框在图像的高度代表了目标距离的远近与变化情况 故使用measurement中的高度对方差进行初始化。
    在这里插入图片描述

  3. 预测阶段函数predict
    在这里插入图片描述

  4. 分布转换函数project
    在这里插入图片描述

  5. 更新在这里插入图片描述

  6. 计算距离(马氏距离)

马氏距离(Mahalanobis
Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。

在这里插入图片描述
在这里插入图片描述

4 多目标跟踪中的卡尔曼滤波

在这里插入图片描述

5 总结

卡尔曼滤波的思想是通过对预测结果的统计分析与迭代更新来总结出一些运动信息,减少异常值出现的概率,在目标跟踪任务中大多作为一个优秀的运动模型使用,帧间的位移假设为线性匀速模型。在一些跟踪模型中,大多数采用图像的目标框的预测结果和卡尔曼滤波器的结果加权得到目标框最终的结果和轨迹匹配结果。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值