推荐系统(九)SENet 双塔模型在推荐领域召回粗排的应用

在推荐领域,双塔模型是粗排/召回环节应用最为广泛的算法模型,各种改进型双塔模型层出不穷,本文介绍一种基于 SENet 的双塔模型。

1.双塔模型的鼻祖——DSSM 模型

所谓“双塔模型”,可以追溯到 UIUC(伊利诺伊大学厄巴纳-香槟分校)与微软于 2013 在 CIKM 上发表的论文,论文中提到了一种名为 DSSM(Deep Structured Semantic Models,深度结构化语义模型)的模型。其核心思想是将 query 和 doc 映射到到共同维度的语义空间中,通过最大化 query 和 doc 语义向量之间的余弦相似度,从而训练得到隐含语义模型,达到检索的目的。

提出 DSSM 的论文题目:《Learning Deep Structured Semantic Models for Web Search using Clickthrough Data》

经过多年演进,DSSM 被广泛应用到多个领域,比如:搜索引擎检索,广告相关性,问答系统,机器翻译等。当然,DSSM 主要用在召回和粗排阶段,基本上统治了召回/粗排阶段,呈现“垄断地位”。推荐中 DSSM 双塔模型结构如图 1 所示:
Alt

图1. 推荐领域常用 DSSM 模型结构

如图 1 所示,双塔模型结构非

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值