希尔伯特变换(Hilbert Transform)的性质

博客主要围绕实信号和随机过程的希尔伯特变换展开。介绍了希尔伯特逆变换、卷积的希尔伯特变换,证明了希尔伯特变换不改变能量和功率,还涉及窄带信号的希尔伯特变换,以及随机过程中X^(t)的自相关函数和X^(t)与X(t)的互相关函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实信号的希尔伯特变换

希尔伯特逆变换

在这里插入图片描述
F ( x ^ ( t ) ) = ( − j s g n ( ω ) ) 2 X ( ω ) = X ( ω ) \mathcal{F}(\hat x(t))=(-j\mathrm{sgn}(\omega))^2X(\omega)=X(\omega) F(x^(t))=(jsgn(ω))2X(ω)=X(ω)

卷积的希尔伯特变换

在这里插入图片描述

简明证法
在这里插入图片描述

希尔伯特变换不改变能量、功率

在这里插入图片描述
证明过程相当于应用了帕赛瓦尔定理

窄带信号的希尔伯特变换

在这里插入图片描述
在这里插入图片描述

随机过程的希尔伯特变换

X ^ ( t ) \hat X(t) X^(t) 的自相关函数

在这里插入图片描述

X ^ ( t ) 和 X ( t ) \hat X(t)和 X(t) X^(t)X(t) 的互相关函数

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值