Spark SQL(RDD、DataFrame 、DataSet 相互转换)

Spark SQL(RDD、DataFrame 、DataSet 相互转换)

一、Spark SQL数据抽象

SparkCore的数据抽象:RDD

SparkStreaming的数据抽象:DStream,底层是RDD

SparkSQL的数据抽象:DataFrame和DataSet,底层是RDD

在这里插入图片描述

1、DataFrame

DataFrame = RDD - 泛型 + Schema约束(指定字段名和类型)+ SQL操作 + 优化

DataFrame 就是在RDD的基础之上做了进一步的封装,支持 SQL操作

DataFrame 就是一个分布式表

2、DataSet

DataSet = DataFrame + 泛型

DataSet = RDD + Schema约束(指定字段名和类型)+ SQL操作 + 优化

DataSet 就是在RDD的基础之上做了进一步的封装,支持 SQL操作

DataSet 就是一个分布式表

二、实战示例
1、加载数据成为分布式表
package com.jiang.sparksql

import org.apache.spark.SparkContext
import org.apache.spark.sql.{
   
   DataFrame, SparkSession}

object Demo01 {
   
   

  def main(args: Array[String]): Unit = {
   
   

    //TODO 0.准备环境
    val spark: SparkSession = SparkSession.builder().appName("sparksql").master("local[*]").getOrCreate()
    val cs: SparkContext = spark.sparkContext
    cs.setLogLevel("WARN")
    
    //TODO 1.加载数据
    val resultTxt: DataFrame = spark.read.text("data/input/wc.txt")
    val resultJson: DataFrame = spark.read.json("data/input/package.json")
    val resultCsv: DataFrame = spark.read.csv("data/input/testcsv.csv")


    //TODO 2.处理数据

    //TODO 3.输出结果
    resultTxt.printSchema()
    resultJson.printSchema()
    resultCsv.printSchema()
    resultTxt.show()
    resultJson.show()
    resultCsv.show()

    //TODO 3.关闭资源
    spark.stop()
  }

}
2、将RDD转为DataFrame
(1)使用样例类
package com.jiang.sparksql

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{
   
   DataFrame, SparkSession}

object Demo02 {
   
   

  def main(args: Array[String
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值