1147 Heaps (30 分)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
题目要求
给定m个层序遍历的树(完全二叉树)的序列,判断其大顶堆还是小顶堆,还是不是堆。并输出后序遍历的结果
解题思路
由于是完全二叉树,则结点数量固定,每个结点的位置也就固定了,判断子结点(2*root+1,2*root+2)和父结点(root——从0开始)的大小状态,如果子结点大于父结点则不是大顶堆,如果子结点小于父结点则不是小顶堆。然后根据利用递归实现二叉树的后序遍历类似,即可得到后序遍历。根据设置的maxheap和minheap的状态判断是否为大顶堆或小顶堆
完整代码
#include<bits/stdc++.h>
using namespace std;
bool minheap=true,maxheap=true;
int level[1010],n;
vector<int> post;
void checkheap(int root){
int left=2*root+1;
int right=2*root+2;
if(left<n){
if(level[root]<level[left]) maxheap=false;
if(level[root]>level[left]) minheap=false;
checkheap(left);
}
if(right<n){
if(level[root]<level[right]) maxheap=false;
if(level[root]>level[right]) minheap=false;
checkheap(right);
}
post.push_back(level[root]);
}
int main(){
int m,i,j;
cin>>m>>n;
for(i=0;i<m;i++){
post.clear();
minheap=true;
maxheap=true;
for(j=0;j<n;j++) cin>>level[j];
checkheap(0);
if(minheap) cout<<"Min Heap"<<endl;
else if(maxheap) cout<<"Max Heap"<<endl;
else cout<<"Not Heap"<<endl;
for(j=0;j<n;j++){
if(j!=0) cout<<" ";
cout<<post[j];
}
cout<<endl;
}
return 0;
}