关联规则算法总结

本文总结了关联规则算法中的Apriori和FP Growth算法,包括它们的原理、优缺点以及实现方式。Apriori算法基于先验性质,但存在大量候选集生成的问题。FP Growth算法则通过构建FP树优化了这一过程,只需扫描数据两次。这两种算法在数据挖掘中有广泛应用,如商品推荐、入侵检测等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关联规则算法总结

一、Apriori、FP Growth算法原理:

频繁项集的评估标准有:
在这里插入图片描述
在这里插入图片描述


1.1 Apriori算法原理

频繁项集: 是支持值大于阈值(support)的项集。

关联分析的目的:

  • 发现频繁项集:发现满足最小支持度的所有项集;
  • 发现关联规则:从频繁项集中提取所有高置信度的规则。

Apriori算法就是基于一个先验:

  • 如果某个项集是频繁的,那么它的所有子集也是频繁的;
  • 如果一个集合不是频繁项集,则它的所有父集(超集)都不是频繁项集。

Apriori算法流程:

输入:数据集合D,支持度阈值𝛼

输出:最大的频繁k项集

(1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。

(2)挖掘频繁k项集:

​ a) 扫描数据计算候选频繁k项集的支持度;

​ b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值