【牛客小白月赛31 D.坐标计数】暴力观察法

博客讲述了一道数论题的解题过程。一开始无思路,看题解后采用暴力观察法,发现100*100范围内所有点都满足条件,进而推测题目范围内所有点都满足,得出答案。还指出在解题没思路时,可用暴力手法找潜在关系,如正逆推打表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

看到题目,十分浓厚的数论色彩,在纸上画了画,发现没啥思路。

于是看了题解,发现了一个精妙绝伦的操作:暴力观察

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
const int maxn = 1e5+7;
int check(int x,int y,int stp)
{
    if(stp>=10004) return 0;
    if(x==0 && y==0) return 1;
    return check(x^y,abs(x-y),stp+1);
}
int main()
{
    for(int i=1;i<=100;i++)
    {
        for(int j=1;j<=100;j++)
        {
            printf("%d\n",check(i,j,0));
        }
    }
    return 0;
}

通过上述程序可以看出,在100*100的范围内,所有的点都满足条件。于是大胆推测,在题目的范围内,所有的点都是满足条件的。

于是答案就呼之欲出了。

此题的启发无疑是巨大的:在题目没有什么思路的时候,不妨通过一些暴力的手法来找到题目中的潜在关系。有时候是正着打表,有时候是逆推打表。注意这个技巧。

内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
### 关于牛客小白109的信息 目前并未找到关于牛客小白109的具体比信息或题解内容[^5]。然而,可以推测该事可能属于牛客网举办的系列算法竞之一,通常这类比会涉及数据结构、动态规划、图论等经典算法问题。 如果要准备类似的事,可以通过分析其他场次的比题目来提升自己的能力。例如,在牛客小白13中,有一道与二叉树相关的题目,其核心在于处理树的操作以及统计最终的结果[^3]。通过研究此类问题的解决方法,能够帮助理解如何高效地设计算法并优化时间复杂度。 以下是基于已有经验的一个通用解决方案框架用于应对类似场景下的批量更新操作: ```python class TreeNode: def __init__(self, id): self.id = id self.weight = 0 self.children = [] def build_tree(n): nodes = [TreeNode(i) for i in range(1, n + 1)] for node in nodes: if 2 * node.id <= n: node.children.append(nodes[2 * node.id - 1]) if 2 * node.id + 1 <= n: node.children.append(nodes[2 * node.id]) return nodes[0] def apply_operations(root, operations, m): from collections import defaultdict counts = defaultdict(int) def update_subtree(node, delta): stack = [node] while stack: current = stack.pop() current.weight += delta counts[current.weight] += 1 for child in current.children: stack.append(child) def exclude_subtree(node, total_nodes, delta): nonlocal root stack = [(root, False)] # (current_node, visited) subtree_size = set() while stack: current, visited = stack.pop() if not visited and current != node: stack.append((current, True)) for child in current.children: stack.append((child, False)) elif visited or current == node: if current != node: subtree_size.add(current.id) all_ids = {i for i in range(1, total_nodes + 1)} outside_ids = all_ids.difference(subtree_size.union({node.id})) for idx in outside_ids: nodes[idx].weight += delta counts[nodes[idx].weight] += 1 global nodes nodes = {} queue = [root] while queue: curr = queue.pop(0) nodes[curr.id] = curr for c in curr.children: queue.append(c) for operation in operations: op_type, x = operation.split(' ') x = int(x) target_node = nodes.get(x, None) if not target_node: continue if op_type == '1': update_subtree(target_node, 1) elif op_type == '2' and target_node is not None: exclude_subtree(target_node, n, 1) elif op_type == '3': path_to_root = [] temp = target_node while temp: path_to_root.append(temp) if temp.id % 2 == 0: parent_id = temp.id // 2 else: parent_id = (temp.id - 1) // 2 if parent_id >= 1: temp = nodes[parent_id] else: break for p in path_to_root: p.weight += 1 counts[p.weight] += 1 elif op_type == '4': pass # Implement similarly to other cases. result = [counts[i] for i in range(m + 1)] return result ``` 上述代码片段展示了针对特定类型的树形结构及其操作的一种实现方式。尽管它并非直接对应小白109中的具体题目,但它提供了一个可借鉴的设计思路。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值