torch.Tensor详解

本文详细介绍了PyTorch中的张量数据类型,包括不同数值类型的张量、初始化方法、索引与切片操作、从张量获取Python数值以及如何利用requires_grad属性进行自动梯度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.Tensor详解

参考:

torch.Tensor — PyTorch 1.12 documentation

提供的数据类型:
Data typedtypeCPU tensorGPU tensor
32-bit floating pointtorch.float32 or torch.floattorch.FloatTensortorch.cuda.FloatTensor
64-bit floating pointtorch.float64 or torch.doubletorch.DoubleTensortorch.cuda.DoubleTensor
16-bit floating point [1]torch.float16 or torch.halftorch.HalfTensortorch.cuda.HalfTensor
16-bit floating point [2]torch.bfloat16torch.BFloat16Tensortorch.cuda.BFloat16Tensor
32-bit complextorch.complex32 or torch.chalf
64-bit complextorch.complex64 or torch.cfloat
128-bit complextorch.complex128 or torch.cdouble
8-bit integer (unsigned)torch.uint8torch.ByteTensortorch.cuda.ByteTensor
8-bit integer (signed)torch.int8torch.CharTensortorch.cuda.CharTensor
16-bit integer (signed)torch.int16 or torch.shorttorch.ShortTensortorch.cuda.ShortTensor
32-bit integer (signed)torch.int32 or torch.inttorch.IntTensortorch.cuda.IntTensor
64-bit integer (signed)torch.int64 or torch.longtorch.LongTensortorch.cuda.LongTensor
Booleantorch.booltorch.BoolTensortorch.cuda.BoolTensor
quantized 8-bit integer (unsigned)torch.quint8torch.ByteTensor/
quantized 8-bit integer (signed)torch.qint8torch.CharTensor/
quantized 32-bit integer (signed)torch.qint32torch.IntTensor/
quantized 4-bit integer (unsigned)torch.quint4x2torch.ByteTensor/

除了编码常见的类型,还有几种不常见的类型:

1、16-bit floating point[1]:使用 1 个符号、5 个指数和 10 个有效位。 当精度很重要以牺牲范围为代价时很有用。

2、16-bit floating point[2]:使用 1 个符号、8 个指数和 7 个有效位。 当范围很重要时很有用,因为它具有与 float32 相同数量的指数位

3、quantized 4-bit integer (unsigned):量化的 4 位整数存储为 8 位有符号整数。 目前仅在 EmbeddingBag 运算符中支持。

不指定类型的话,默认是:torch.FloatTensor

初始化:

1、使用列表或者序列:

import torch

torch.tensor([[1., -1.], [1., -1.]])
torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))

注意:torch.tensor会拷贝数据,如果在改变requires_grad时避免拷贝数据,需要使用requires_grad_() or detach()。如果在使用numpy array初始化想避免拷贝,需要使用torch.as_tensor()

2、设置类型和设备
>>> torch.zeros([2, 4], dtype=torch.int32)
tensor([[ 0,  0,  0,  0],
        [ 0,  0,  0,  0]], dtype=torch.int32)
>>> cuda0 = torch.device('cuda:0')
>>> torch.ones([2, 4], dtype=torch.float64, device=cuda0)
tensor([[ 1.0000,  1.0000,  1.0000,  1.0000],
        [ 1.0000,  1.0000,  1.0000,  1.0000]], dtype=torch.float64, device='cuda:0')
3、可以使用 Python 的索引和切片符号访问和修改张量的内容
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> print(x[1][2])
tensor(6)
>>> x[0][1] = 8
>>> print(x)
tensor([[ 1,  8,  3],
        [ 4,  5,  6]])
4、使用 torch.Tensor.item() 从包含单个值的张量中获取 Python 数字:
>>> x = torch.tensor([[1]])
>>> x
tensor([[ 1]])
>>> x.item()
1
>>> x = torch.tensor(2.5)
>>> x
tensor(2.5000)
>>> x.item()
2.5
5、requires_grad=True自动梯度计算
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
>>> out = x.pow(2).sum()
>>> out.backward()
>>> x.grad
tensor([[ 2.0000, -2.0000],
        [ 2.0000,  2.0000]])
<think>我们正在处理一个关于PyTorchTensor类型属性的查询。用户希望了解有关PyTorchtensor类型属性的文档。根据引用[2]中提到的内容,我们可以知道Tensor在PyTorch中有一些基础属性,比如形状(shape)和数据类型(dtype)。在引用[2]中,我们看到`torch.ones_like`和`torch.rand_like`函数可以保留或覆盖原tensor的数据类型。具体到用户的问题,他们想了解的是tensor的`type`属性。在PyTorch中,每个tensor都有一个数据类型(dtype),我们可以通过`.dtype`属性来访问。同时,tensor还有设备(device)和布局(layout)等属性。常见的dtype包括: -`torch.float32`或`torch.float`:32位浮点数-`torch.float64`或`torch.double`:64位浮点数- `torch.float16`或 `torch.half`:16位浮点数-`torch.int8`:8位整数-`torch.uint8`:8位无符号整数- `torch.int16`或 `torch.short`:16位整数-`torch.int32`或`torch.int`:32位整数- `torch.int64`或 `torch.long`:64位整数- `torch.bool`:布尔类型此外,tensor还有`.device`属性(表示tensor所在的设备,如CPU或GPU)和`.layout`属性(如`torch.strided`)。我们可以通过以下方式获取tensor的类型信息: 1.创建tensor时指定dtype:```pythonx= torch.tensor([1,2,3], dtype=torch.float32)```2.使用`.dtype`属性查看:```pythonprint(x.dtype)#输出:torch.float32``` 3.使用`.type()`方法可以转换数据类型(如果提供参数)或者返回当前类型(如果不提供参数):```python#获取类型print(x.type())#输出:'torch.FloatTensor'#转换类型y =x.type(torch.DoubleTensor)print(y.type())#输出:'torch.DoubleTensor'``` 注意:`.type()`方法返回的是字符串形式的tensor类型(包括数据类型和设备),而`.dtype`返回的是具体的数据类型(dtype对象)。另外,在引用[3]中,我们看到了自定义模块中使用了`nn.Parameter`,它也是Tensor的一种,具有相同的属性。因此,我们可以总结如下:-使用`.dtype`获取tensor的数据类型。 -使用`.type()`方法(不带参数)获取tensor的类型字符串(包括设备信息),或者使用`.type(dtype)`进行类型转换。-使用`.device`获取设备信息。下面我们给出一个示例代码来展示这些属性: ```pythonimport torch#创建一个tensor,并指定数据类型x= torch.tensor([1,2,3], dtype=torch.float32)print(f"dtype ofx:{x.dtype}")# torch.float32print(f"type ofx:{x.type()}")#输出:torch.FloatTensor#转换数据类型y= x.type(torch.DoubleTensor) print(f"dtypeof y: {y.dtype}")# torch.float64print(f"type ofy:{y.type()}")#输出:torch.DoubleTensor#创建一个在GPU上的tensor(如果可用)if torch.cuda.is_available():x_gpu= x.cuda()print(f"device ofx_gpu:{x_gpu.device}")#cuda:0print(f"typeof x_gpu: {x_gpu.type()}")#输出:torch.cuda.FloatTensor```注意:`.type()`返回的字符串中,对于CPU上的tensor,会显示为`torch.FloatTensor`等,对于GPU上的tensor,会显示为`torch.cuda.FloatTensor`。 在官方文档中,关于tensor属性的部分可以在[PyTorchTensor Attributes](https://pytorch.org/docs/stable/tensor_attributes.html)找到。因此,回答用户的问题:PyTorch tensor的`type`属性(实际上是一个方法)用于获取或设置tensor的类型(包括数据类型和设备)。而直接获取数据类型则使用`.dtype`属性。为了更全面,我们还可以提到: -使用`.is_cuda`属性(已弃用,推荐使用`.device`)判断是否在GPU上。-使用`.layout`属性获取tensor的布局(默认是`torch.strided`)。 但是用户主要关注的是类型(数据类型),所以我们重点放在dtype和type()方法上。 最后,我们生成相关问题。</think>### PyTorch Tensor 类型属性详解 在 PyTorch 中,Tensor 的类型属性主要通过 `dtype` 和 `type()` 方法来管理。以下是核心概念和使用方法: #### 1. **数据类型 (dtype)** 每个 Tensor 都有固定的数据类型,可通过 `.dtype` 属性访问: ```python import torch # 创建不同数据类型的 Tensor float_tensor = torch.tensor([1.0, 2.0], dtype=torch.float32) # 32位浮点 int_tensor = torch.tensor([1, 2], dtype=torch.int64) # 64位整数 bool_tensor = torch.tensor([True, False]) # 布尔类型 print(float_tensor.dtype) # 输出: torch.float32 print(int_tensor.dtype) # 输出: torch.int64 ``` 常用数据类型: - `torch.float32` / `torch.float`:单精度浮点 - `torch.float64` / `torch.double`:双精度浮点 - `torch.int32` / `torch.int`:32位整数 - `torch.int64` / `torch.long`:64位整数(常用于索引) - `torch.bool`:布尔类型 - `torch.complex64`:复数类型 #### 2. **类型转换方法** **(1) 创建时指定类型** ```python x = torch.randn(2, 3, dtype=torch.double) # 明确指定双精度 ``` **(2) 转换现有 Tensor 类型** ```python x = torch.tensor([1, 2, 3]) y = x.float() # 转为 float32 z = x.double() # 转为 float64 w = x.to(torch.int16) # 转为 int16 ``` **(3) 使用 `type()` 方法** `type()` 可获取或转换类型: ```python print(x.type()) # 输出类型字符串,如 'torch.LongTensor' # 转换类型 y = x.type(torch.FloatTensor) # 转为浮点Tensor ``` #### 3. **类型相关操作** **(1) 保留原类型创建**(如引用[2]所示) ```python x = torch.tensor([[1, 2], [3, 4]]) x_ones = torch.ones_like(x) # 保留x的形状和数据类型 x_rand = torch.rand_like(x, dtype=torch.float) # 覆盖数据类型 ``` **(2) 类型检查** ```python print(x.is_floating_point()) # 是否为浮点类型 print(x.dtype == torch.int64) # 精确类型检查 ``` #### 4. **设备与类型联动** 当 Tensor 在 GPU 时,类型会包含设备信息: ```python if torch.cuda.is_available(): gpu_tensor = x.cuda() print(gpu_tensor.type()) # 输出 'torch.cuda.FloatTensor' ``` #### 5. **类型对计算的影响** 数据类型直接影响计算精度和内存占用: ```python a = torch.tensor([1, 2], dtype=torch.float32) b = torch.tensor([0.5, 1.5], dtype=torch.float64) # c = a + b # 报错!类型不匹配 c = a.double() + b # 需统一类型 ``` > 官方文档参考:[Tensor Attributes](https://pytorch.org/docs/stable/tensor_attributes.html) --- ### 相关问题 1. **如何在 PyTorch 中高效转换大规模 Tensor 的数据类型?** 2. **PyTorch 的混合精度训练 (AMP) 如何管理 Tensor 数据类型?** 3. **不同数据类型的 Tensor 对神经网络训练有哪些影响?** 4. **如何检查两个 Tensor 是否类型兼容以进行运算?** 5. **PyTorchTensor 的 `dtype` 和 `type()` 方法有何区别?**
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值