论文阅读和分析:PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram

该文提出了一种名为PPGnet的神经网络架构,利用8秒的PPG信号,通过不同大小的卷积核提取特征,结合卷积块和LSTM层,有效地估计心率。网络设计包括1s长度信号的拼接、多尺寸卷积、卷积块、LSTM处理及全连接层,旨在实现设备独立的心率估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容:

提出一种神经网络架构,用于PPG信号估计心率;


网络架构:

在这里插入图片描述


网络设计:

1、使用8s的PPG信号,截断城8份,每份1s,拼接后作为输入,PPG采样频率是125Hz;

2、使用1×5,1×20,1×40,1×60,1×801\times 5,1\times20,1\times40,1\times60,1\times801×5,1×20,1×40,1×60,1×80的卷积核分别卷积再拼接,提供不同感受野的特征;

3、紧接着8个卷积块,卷积块里面包含两个子块,每个子块有卷积、批归一化和RELU;

4、使用8×1258\times1258×125的LSTM在1的基础上进行运算;

5、将3和4的结果进行拼接;

6、将5的拼接后的矩阵,传入384×125384\times125384×125的LSTM模块;

7、最后接全连接层;

在这里插入图片描述


结果:

在这里插入图片描述

参考:
PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值