论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation

该论文提出了一种基于CNN-LSTM神经网络的架构,用于从光体积描记图传感器信号中连续估计心率、收缩压、舒张压和平均动脉压。研究在MIMICII数据集上进行,使用10折交叉验证,并遵循AAMI和BHS的标准评估。预处理步骤包括去除异常和短数据段。损失函数采用了带阈值的Huber损失。评价指标包括平均绝对误差和标准差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals


## 主要内容:

1、使用CNN-LSTM神经网络架构同时计算HR、SBP、DBP、MAP(心率和血压);

2、通过Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS)的标准;

3、在MIMIC II数据集上使用10-fold交叉验证;

4、采样频率125HZ;

5、预处理,将数据集中的数据长度过短、数据值异常的去掉;


网络架构:

在这里插入图片描述


网络层配置:

在这里插入图片描述

损失函数:

Hδ(y,f(x))={12(y−f(x))2,if ∣y−f(x)∣≤δ,δ∣y−f(x)∣−12δ2,otherwise. H_\delta(y,f(x))=\begin{cases}\frac{1}{2}(y-f(x))^2,&if~|y-f(x)|\le\delta,\\[6pt]\delta|y-f(x)|-\frac{1}{2}\delta^2,&otherwise.\end{cases} Hδ(y,f(x))=21(yf(x))2,δyf(x)21δ2,if yf(x)δ,otherwise.
其中δ=1\delta=1δ=1


评价指标:

MAE=1n∑i=1n∣yi−y^i∣ME=1n∑i=1n(yi−y^i)SD=1n∑i=1n(xi−ME)2 \begin{aligned} {MAE}& =\frac{1}{n}\sum\limits_{i=1}^n\left|y_i-\hat{y}_i\right| \\ ME& =\frac{1}{n}\sum\limits_{i=1}^n\left(y_i-\hat{y}_i\right) \\ SD& =\sqrt{\frac{1}{n}\sum\limits_{i=1}^n\left(x_i-ME\right)^2} \end{aligned} MAEMESD=n1i=1nyiy^i=n1i=1n(yiy^i)=n1i=1n(xiME)2


实验结果:

在这里插入图片描述

参考:

Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值