每天学习一个Torch函数之torch.clamp

本文详细介绍了PyTorch中的torch.clamp函数,该函数用于限制Tensor的值域,确保其在指定的最小值和最大值之间。通过数学公式展示了其工作原理,并给出一个示例说明如何使用该函数限制张量元素在-0.5到0.5之间。此操作在神经网络训练中常用于防止梯度爆炸或消失问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数原型

torch.clamp(input, min=None, max=None, *, out=None)

理解

clamp的英文意思是”夹子、夹紧“,英英解释:”A clamp is a device that holds two things firmly together.“
所以这个函数的作用是将输入的Tensor“夹”在最小值和最大值之间。
数学式为:
yi=min(max(xi,min_valuei),max_valuei) y_i=min(max(x_i, min\_value_i),max\_value_i) yi=min(max(xi,min_valuei),max_valuei)

参数

  • input: Tensor
  • min: Number or Tensor
  • max: Number or Tensor

返回值:out: Tensor

Example

import torch
a = torch.randn(4)
b = torch.clamp(a, min=-0.5, max=0.5)
print(a, '\n', b)

输出为:

tensor([-1.7120,  0.1734, -0.0478, -0.0922])
tensor([-0.5000,  0.1734, -0.0478, -0.0922])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值