线性回归假设:Y=β1X+β0+ϵY=β1X+β0+ϵ
我们假设数据具有以下形式:
y=β1x+β0+ϵy=β1x+β0+ϵ where ϵϵ~N(μ,σμϵ)N(μ,σϵμ)
这样的模型可以生产如下的数据:
普通最小二乘法(OLS)线性回归
如果我们有上图所示的一个数据集,我们就需要找到一条合适的直线来描述上述的数据,可以通过以下公式来描述这条直线:
y=β1x+β0y=β1x+β0
我们的目标是找到β0β0和β
我们假设数据具有以下形式:
y=β1x+β0+ϵy=β1x+β0+ϵ where ϵϵ~N(μ,σμϵ)N(μ,σϵμ)
这样的模型可以生产如下的数据:
如果我们有上图所示的一个数据集,我们就需要找到一条合适的直线来描述上述的数据,可以通过以下公式来描述这条直线:
y=β1x+β0y=β1x+β0
我们的目标是找到β0β0和β