【买卖股票的最佳时机】

【LeetCode121. 买卖股票的最佳时机】

题目描述

方法1: 一次遍历

  • 遍历一遍数组,计算每次 到当天为止 的最小股票价格和最大利润

  • 代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
# 方法1
        minPrice = float('inf') # 最低的股票价格先设置为 无穷小
        maxprofit = 0
        for price in prices:
            minPrice = min(minPrice,price)  # 更新最低价格?
            maxprofit = max(maxprofit,price-minPrice) # 更新最大利润?
            
        return maxprofit

方法2: 动态规划

  • 遍历一遍数组,计算每次 到当天为止 的最小股票价格和最大利润

  • 代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        # 方法2 
        n = len(prices)
        if n==0: return 0  # 边界条件
        dp = [0] * n  # dp[i] 表示第i天卖出的最大利润
        minPrice = prices[0] # 初始条件

        for i in range(1,n):
             minPrice = min(minPrice,prices[i]) # 更新最低价格?
             dp[i] = max(dp[i-1],prices[i]-minPrice) # 状态转移方程
            
       	return dp[-1] # 取dp数组的最后一个元素

  • 动态规划做题步骤:
  • 明确 dp(i) 应该表示什么;( 若为二维dp(i)(j) )
  • 根据 dp(i)和 dp(i-1) 的关系得出状态转移方程;
  • 确定初始条件,如 dp(0) 和边界条件;
内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值