- 博客(1134)
- 收藏
- 关注
原创 MindSpore的基础使用知识
摘要:MindSpore是华为开源的全场景AI框架,2025年发布2.4LTS版本,支持端边云统一架构和昇腾NPU最优协同。其核心优势包括自动并行、大模型原生支持以及与PyTorch的兼容性,在Llama-70B等模型上相比PyTorch+DeepSpeed提升20%吞吐。新版本提供3行代码实现大模型微调、30%性能提升和50%显存优化,已在金融、运营商等领域落地应用。框架包含动态/静态图切换、5维并行等特性,支持CPU/GPU/NPU异构计算。
2025-09-05 15:10:49
437
原创 MindSpore 架构下的 Prompt Tuning 原理解析
MindSpore框架下的大模型PromptTuning实现方法 摘要:本文探讨了在MindSpore深度学习框架中实现PromptTuning参数高效微调的技术方案。MindSpore的图编译优化和自动并行能力为PromptTuning提供了高效执行环境,支持静态图模式优化和混合精度训练。文章详细介绍了三种典型实现:SoftPromptTuning(输入侧拼接可学习向量)、PrefixTuning(注意力层注入K/V前缀)和P-Tuningv2(轻量提示编码器生成动态提示),并分析了在昇腾平台上的工程优化
2025-09-05 15:08:40
399
原创 MindSpore LLM大模型原理
本文介绍了MindSporeLLM大模型中的注意力机制原理及其变体。注意力机制通过计算query和key的点积相似度,经Softmax归一化处理获得注意力权重,并引入缩放因子稳定训练。自注意力机制关注序列内部元素关联性,用于理解句子逻辑关系。多头注意力机制通过并行计算多组注意力,使模型能同时关注序列的不同方面(如语法、语义等),虽然增加了计算量但显著提升了模型表征能力而不明显增加推理时间。这些机制共同增强了自然语言处理任务的性能。
2025-09-05 15:06:46
202
原创 audio_spectrogram_transformer模型论文解读(基于mindnlp)
《AudioSpectrogramTransformer》论文提出了一种基于Transformer架构的音频分类模型AST。该模型将音频频谱图作为输入,通过自注意力机制捕捉全局依赖关系,创新性地采用ImageNet预训练策略提升性能。在AudioSet、ESC-50和SpeechCommands数据集上,AST分别达到0.485 mAP、95.6%和98.1%准确率,较之前最优模型提升2.3%、1.2%和0.5%。研究验证了跨模态预训练的有效性和Transformer处理音频数据的优势。论文推荐使用Mind
2025-09-05 14:19:49
546
原创 Bark模型论文解读,并基于MindSpore NLP推理复现
本文介绍了Bark文本到音频模型及其支撑论文AudioLM,并比较了PyTorch和MindSporeNLP平台下的性能表现。Bark是由Suno开发的基于transformer的多语音合成模型,支持13种语言和多种音频效果。其核心技术源于AudioLM论文提出的分层音频标记方法,实现了高质量音频生成和长期一致性。实验采用"suno/bark-small"模型,在相同硬件环境下,MindSporeNLP(16.42秒)比PyTorch(18.07秒)具有更低的延迟,但内存占用略高(140
2025-09-05 14:15:18
312
原创 MindSpeed LLM 分析的profiling如何进行模型评估
摘要: MindSpeed LLM Profiling 是一款用于分析大语言模型性能瓶颈的工具,通过量化指标(如算子耗时、内存占用、GPU利用率等)定位训练/推理过程中的效率问题。新手使用步骤:1)安装环境与依赖;2)准备模型和测试数据;3)配置需跟踪的指标(时间、内存、并行等);4)运行性能分析;5)解读报告,针对性优化(如算子替换、量化);6)验证优化效果。建议从单卡推理入手,逐步扩展场景,并参考官方文档确保兼容性。核心价值是将模糊性能问题转化为可量化的优化方向。
2025-08-29 14:47:48
556
原创 基于 MindSpeed-LLM 框架的大模型训练全流程经验分享
MindSpeed-LLM是昇腾生态下专为大语言模型设计的高效训练框架,支持主流模型的分布式预训练和微调。本文详细介绍了从环境搭建到模型微调的全流程实践,包括模型权重转换、数据预处理、并行策略配置等关键步骤,并分享了内存优化和计算加速等实用技巧。该框架通过创新的内存管理和混合并行技术,显著提升训练效率,是国产硬件上部署大模型的理想选择。
2025-08-29 14:46:47
700
原创 pytorch迁移mindspore案例的学习记录
阅读一篇“Non-rigid Point Cloud Registration with Neural Deformation Pyramid”论文,对里面的pytorch框架的代码进行分析,然后讨论如何迁移到mindspore框架。
2025-08-29 14:41:20
624
原创 有关MindSpore的一些基础知识
MindSpore是由华为推出的全场景深度学习框架,具备易开发、高效执行和全场景统一部署三大特点。它以张量为基础数据类型,支持动静统一的编程体验和自动微分机制,并提供自动并行与丰富的模型套件。框架适配多种硬件平台,通过编译优化和动态图调试提升性能,支持"端-边-云"统一部署。在自然语言处理、计算机视觉等领域表现优异,助力AI应用开发与跨学科研究。
2025-08-29 14:28:47
320
原创 MindSpore Quantum 0.11.0 正式发布:性能全面跃升,高效易用,加速前沿量子计算研究
MindSpore Quantum 0.11.0发布两大核心升级:1)推出专用量子化学求解器mqchem,在氢链分子模拟中速度提升百倍;2)为量子启发式算法(QAIA)新增GPU/NPU后端支持,组合优化问题求解效率提升数十倍。新版本显著提升了量子化学计算和组合优化问题的处理能力,支持与OpenFermion无缝衔接,并保持易用性。该框架已实现量子机器学习、量子化学模拟等主流算法的性能突破,为量子计算研究提供高效开发平台。
2025-08-29 14:26:28
651
原创 BiT模型论文解读,并基于MindSpore NLP推理复现
《Big Transfer (BiT): 通用视觉表征学习》提出了一种基于大规模数据集和大型模型的简单预训练方法。该研究通过监督学习在ImageNet-21k和JFT-300M等大数据集上训练ResNet变体,证明了模型规模与数据规模协同扩展的重要性。BiT的创新在于:1)提出标准化迁移学习协议(BiT-HyperRule),无需复杂调参;2)在小样本任务中表现优异;3)去除了不必要的训练技巧。实验表明,BiT在19项视觉任务上的平均准确率达76.3%,在COCO检测任务达到43.8% AP,优于当时主流方
2025-08-29 14:25:04
1010
原创 模型解析性能数据
MindSpore性能分析工具使用指南:安装MindInsight后需修改配置文件中的HOST为本机IP地址,启动服务指定端口和性能数据路径。通过网页可查看迭代轨迹、算子性能、数据准备和Timeline等可视化分析结果,帮助用户定位性能瓶颈并进行优化。详细操作可参考官网文档。
2025-08-22 11:54:34
205
原创 大模型获取性能数据方法
MindSpore提供两种获取性能数据的方式:环境变量配置和修改训练脚本。环境变量方式通过设置MS_PROFILER_OPTIONS参数控制数据收集选项(如内存、通信等)。修改脚本方式更灵活,支持数据下沉和非下沉训练模式。对于非下沉训练,需在代码中初始化Profiler并指定开始/结束的step;对于下沉训练,只需在模型训练前后初始化并分析Profiler。两种方式均可收集AICore指标、内存等性能数据,输出到指定路径进行分析。
2025-08-22 11:52:43
397
原创 数据集处理结果精细对比
文章摘要:本文介绍了数据集处理结果的可视化方法及精细对比流程。通过将增强后的数据转换为可视化格式(如图片)可初步判断数据处理问题。对于精细对比,建议使用TroubleShooter工具保存MindSpore和对标网络的数据为npy文件,并比较其相似度。对比指标包括数据集一致性、归一化参数、混洗逻辑及增强方式等关键参数对齐情况。文中提供了示例代码和对比结果展示,帮助开发者验证数据处理流程的正确性。
2025-08-22 11:50:27
424
原创 网络算法参数和输出对比
摘要:本文介绍了神经网络参数的对比方法,包括参数一致性检查(参数个数、shape、冻结状态)和权重迁移工具的使用。重点阐述了网络输出对比和逐层对比两种调试策略:静态图模式下使用Dump工具导出算子数据,动态图模式下可采用Debug、USEFUL_TOOLS或Hook功能进行对比。文中提供了各工具的具体使用链接,并强调对比时需去除随机因素,确保网络结构和节点名称一致才能使用自动化工具。
2025-08-22 11:48:36
254
原创 AltCLIP模型论文解读,并基于MindSpore NLP推理复现
AltCLIP模型通过创新性地替换CLIP的文本编码器为多语言XLM-R,采用两阶段训练(知识蒸馏+对比学习),显著提升了多语言视觉-语言任务性能。相比传统方法,该模型数据需求降低90%(仅需36M平行文本和2M图文对),在图像分类、跨模态检索等任务中表现优异,尤其在中英文任务上超越基线模型。模型支持9种语言,展现出强大的扩展性和泛化能力。实验使用MindSporeNLP验证了其效果,为多模态AI研究提供了高效的新思路。
2025-08-22 11:43:14
778
原创 MindSpore优化器实现原理深度解析—adam优化器
本文介绍了MindSpore深度学习框架中优化器系统的核心设计与实现。重点分析了Adam优化器的四层架构设计(用户接口层、基类层、算法实现层、执行层)及其关键组件。详细阐述了Adam算法的数学原理、执行流程及其变体(AdamWeightDecay、AdamOffload)的特性。特别强调了性能优化技术,包括算子融合、内存管理和并行优化策略。文章还总结了学习率调度机制和工程实践要点,如参数分组、梯度处理等。MindSpore优化器系统通过分层设计和多项优化技术,实现了高效、灵活的参数优化方案。
2025-08-22 11:41:10
785
原创 MindSpore实现扩散模型系列——DDPM
本文介绍了基于扩散过程的生成模型DDPM,该模型通过逐步去除图像噪声来生成高质量样本。DDPM采用双向马尔可夫链结构,包括固定的正向扩散过程(逐步添加高斯噪声)和参数化的反向去噪过程(使用神经网络预测噪声)。模型使用U-Net架构,结合时间嵌入和多尺度特征,通过优化变分下界简化训练。数学推导表明,正向过程可直接由初始数据生成任意时刻的噪声数据,而反向过程通过贝叶斯公式推导均值。代码展示了MindSpore实现,包括时间嵌入模块、U-Net结构和损失计算。DDPM通过噪声预测机制避免了显式估计复杂分布,实现了
2025-08-15 10:27:40
755
原创 MindSpore实现扩散模型系列——DDIM
DDIM 是基于 DDPM 改进的迭代隐式概率扩撒模型,核心目标是在保持生成质量的同时加速采样过程。通过引入非马尔可夫扩散过程和确定性采样机制,DDIM 允许在去噪时跳过部分时间步,可以显著减少计算量。可调方差参数:通过控制反向过程的随机性,实现从完全随机(DDPM)到完全确定(无噪声)的采样模式;跳跃式采样:无需遍历所有时间步,可直接在预设的关键时间点之间跳转,大幅提升生成速度。非马尔可夫过程:打破 DDPM 的严格马尔可夫链限制,允许当前状态依赖任意历史状态;
2025-08-15 10:18:18
590
原创 MindSpore实现扩散模型系列——LDM
LDM(Latent Diffusion Model)是一种基于潜在空间的扩散模型,通过将图像压缩到低维潜在空间进行高效生成。核心思想包括:1)使用VAE编码器将图像映射到潜在空间;2)在潜在空间执行扩散过程,通过UNet逐步去噪;3)支持多模态条件生成(如文本、图像)。相比传统扩散模型,LDM在潜在空间操作显著降低了计算复杂度,同时采用交叉注意力机制实现条件控制。模型结构包含编码器-解码器模块、时间编码模块、UNet去噪网络等组件,通过分层扩散机制生成高质量图像。该方法在图像生成任务中展现出高效性和可控性
2025-08-15 10:09:45
577
原创 MindSpore实现扩散模型——CFG
Classifier-Free Guidance(CFG)是2022年提出的扩散模型优化技术,通过联合训练有条件/无条件生成模型,避免了传统方法对显式分类器的依赖。其核心特点包括:1)无需额外训练分类器;2)训练时随机丢弃条件信息;3)推理时通过引导强度参数w灵活调节生成质量。CFG基于共享U-Net架构,在推理阶段对两种预测结果进行线性组合(ε_w = ε_uncond + w*(ε_cond - ε_uncond)),当w>1时增强条件契合度,w<1时提升多样性。该方法显著提升了文本生成图像
2025-08-15 10:07:46
844
原创 MindSpore实现扩散模型——Palette
Palette是一种基于扩散模型的通用图像转换框架,能够完成图像着色、修复、补全和JPEG恢复等多种任务。该模型采用统一的架构设计,通过条件扩散模型实现多任务处理,无需针对不同任务进行特定调整。其核心是256×256分辨率的条件UNet网络,利用跳跃连接实现多尺度特征融合,并通过L2损失函数保证生成样本的多样性。模型在预训练基础上,通过任务条件化适配、自适应噪声调度和后期质量优化等步骤提升性能。代码实现包括时间嵌入、残差块等关键组件,采用MindSpore框架开发。
2025-08-15 10:02:23
634
原创 东南大学魏秀参:基于智能感知的工业AI质检算法与应用实践
摘要:本项目针对工业AI质检中异常样本稀缺、检测精度不足等问题,提出基于智能感知与元学习的创新解决方案。通过构建极小样本单类识别元学习范式,实现仅凭单个正样本即可精准判别异常;采用层次多粒度采样和多目标自适应阈值调节技术,显著提升细粒度检测能力。项目成果已应用于海底管道环焊缝缺陷检测等场景,检测效率提升30%以上,并形成"技术研发-产业应用-人才培养"的闭环体系。同时将研究成果转化为课程资源,培养学生解决复杂工程问题的能力,为智能制造领域输送复合型人才。
2025-08-15 09:58:07
868
原创 昇思MindSpore 2.7版本正式发布,支持ZeroBubbleV流水线并行调度提升训练效率,升级适配vLLM V1架构,采用组合优化提升DeepSeek-V3推理性能
昇思MindSpore 2.7版本发布多项关键升级:1)大模型训练性能显著提升,创新实现ZeroBubbleV流水线并行调度和重计算通信掩盖技术;2)生态兼容性增强,升级适配vLLM v0.8.3,优化DeepSeek-V3推理性能35%+;3)强化学习性能突破,支持动态packing训练(吞吐翻倍)和6D并行权重重排技术;4)新增msMonitor在线监控平台和msprobe工具,实现训练性能实时诊断与静态图精度问题快速定位。该版本在大模型训练、推理优化、工具链等方面均有重大突破。
2025-08-14 16:48:12
1082
原创 性能大幅提升、任务中断快速恢复!昇思MindSpore助力中国移动MoE大模型训练加速
随着AI技术深入千行百业,高效、稳定、自主创新的大模型训练平台将成为智能时代的基础设施。中国移动与昇思MindSpore的合作范例,为行业提供了可复制的技术路径,将加速推动我国人工智能产业从跟随创新向引领创新的历史性跨越。在不久的将来,这种"性能与效率并重"的技术理念,必将孕育出更多突破性成果,为中国AI生态的繁荣发展注入强劲动力。
2025-08-13 14:42:13
296
原创 MindSpore图算融合:从计算图到昇腾芯片的极致优化实践
摘要:MindSpore图算融合技术通过动态图调试与静态图执行相结合,配合芯片级指令优化,在ResNet-50训练中实现较PyTorch 3.1倍的性能提升。该技术采用三级优化体系(基础优化、算子融合、硬件映射),通过显存池化、算子深度融合及昇腾CUBE指令优化,显著提升计算效率。实测显示,该技术使CV模型训练平均加速2.8倍,推理时延降低62%,显存碎片率从35%降至3%以下,为AI模型训练提供了革命性的性能优化方案。
2025-08-13 14:34:51
796
原创 MindSpore深度解析:从动态图到分布式训练的技术实战
本文深度解析MindSpore框架的核心架构与实战技巧:1)独特支持动态图(开发调试)与静态图(高性能部署)一键切换;2)提供自动微分引擎简化反向传播,内置梯度裁剪等优化功能;3)模块化网络设计与高效数据处理流水线;4)在昇腾芯片上实现自动并行与混合精度训练,显著提升性能;5)配套Profiler性能分析工具与内存优化策略。文章还提供了常见问题解决方案,帮助开发者充分发挥MindSpore"动静结合"的优势,实现从模型开发到工业部署的全流程高效落地。
2025-08-13 14:27:49
872
原创 昇腾 AI 开发:基于 MindSpore 实现高效模型训练实践
本文介绍了基于昇腾AI计算硬件和MindSpore框架进行模型开发的技术实践。主要内容包括:1)昇腾服务器环境搭建与MindSpore配置;2)以图像分类任务为例,展示从数据预处理到模型训练的全流程;3)重点探讨了混合精度训练、昇腾算子优化等性能提升技巧;4)分享了实际开发中的问题排查和调优案例。文章指出,充分利用昇腾硬件特性和MindSpore框架优化能力,可显著提升模型训练效率,并展望了未来生态发展方向。
2025-08-13 14:22:10
701
原创 Mindspore框架RNN实现情况分类
本文介绍了基于RNN的情感分类模型实现过程。使用IMDB影评数据集,通过预训练的Glove词向量进行文本编码,构建包含LSTM层的神经网络模型。详细说明了数据处理流程,包括数据下载、词表构建、序列填充等步骤。模型采用二分类交叉熵损失函数和Adam优化器进行训练,并实现了准确率评估方法。实验结果表明,该模型能有效区分影评的正负面情感,在测试集上取得了良好效果。最后展示了自定义输入的情感预测功能,验证了模型的实用性。整个实现过程体现了RNN在自然语言处理任务中的典型应用。
2025-08-08 10:49:48
958
原创 [MindSpore] 常用视觉变换总结
本文总结了MindSpore中常用的视觉变换类,主要分为两类:基于类的变换(mindspore.dataset.vision)和函数式变换(transforms)。关键变换包括Resize(调整尺寸)、RandomCrop(随机裁剪)、Normalize(标准化)、HWC2CHW(格式转换)等。文章特别提供了ViT/ImageNet和ResNet/CIFAR-10场景下的典型预处理组合建议,如训练时使用RandomCropDecodeResize+RandomHorizontalFlip+Normalize
2025-08-08 10:39:16
431
原创 昇腾算力×自动并行:MindSpore如何重新定义AI训练效率
摘要:MindSpore是华为开源的全场景AI计算框架,支持端边云全场景应用开发,提供模型构建、训练、推理和部署的一体化解决方案。其核心优势包括动静统一执行模式、自动并行分布式训练、昇腾硬件深度优化、原生隐私保护技术及科学智能支持。特别适合大规模AI模型训练、昇腾平台开发、端边云协同场景以及隐私敏感应用,为开发者提供从研究到生产的全流程工具链。
2025-08-08 10:29:03
668
原创 MindSpore图算融合:从计算图到昇腾芯片的极致优化实践
摘要: 本文深入解析MindSpore图算融合技术如何通过编译优化实现AI训练效率的突破性提升。文章系统性地阐述了该技术的三大创新:1)动态图转静态图执行,结合三级计算图优化体系(基础优化/算子融合/硬件映射);2)显存池化技术降低碎片率至3%以下;3)昇腾芯片CUBE指令级优化,实现10.8倍矩阵计算加速。在ResNet-50训练中,该技术通过Conv-BN-ReLU深度融合、显存生命周期优化等策略,最终实现较PyTorch 3.1倍的吞吐量提升。实验基于MindSpore 2.2+Ascend 910B
2025-08-08 10:27:28
946
原创 BERT模型论文解读,并基于MindSpore NLP推理复现
【摘要】昇思MindSpore开源实习活动顺利完成BERT模型论文解读任务,并开启暑期新任务。BERT作为Google提出的预训练NLP模型,通过多层Transformer编码器实现双向上下文建模,其创新点包括:1)遮蔽语言模型(MLM)任务(80%替换为[MASK]);2)下一句预测(NSP)任务;3)预训练-微调范式。相比GPT和ELMo,BERT在GLUE、SQuAD等任务中表现突出,如SQuADv1.1单模型F1达90.9%。实操部分提供了基于MindSpore的情感分类实现方案,包括分词、训练和推
2025-08-08 10:21:48
665
原创 BigBird-Pegasus模型论文解读,并基于MindSpore NLP推理复现
《BigBird-Pegasus:长文本摘要技术的突破性进展》摘要 本文深入解析了Google团队提出的BigBird-Pegasus模型,该模型通过创新性地结合BigBird的稀疏注意力机制和Pegasus的GSG预训练目标,有效解决了长文本处理的计算瓶颈问题。BigBird采用随机注意力、滑动窗口注意力和全局注意力相结合的稀疏化策略,将计算复杂度从O(n²d)降至O(n)。Pegasus则通过模拟摘要生成过程的预训练目标提升文本概括能力。实验表明,该模型在ArXiv、PubMed等长文本数据集上的ROU
2025-08-08 10:20:57
844
原创 基于昇思MindSpore,北京航空航天大学科研团队提出科学智算基础模型OmniArch,实现11类PDE求解性能提升
北京航空航天大学李建欣团队提出科学智算基础模型OmniArch,首次实现单个模型统一求解1D-3D偏微分方程(PDE)的突破。该模型通过三大创新:Fourier编码器统一维度表示、TemporalMask处理多物理量耦合、PDE-Aligner增强物理一致性,克服了传统方法维度受限、计算昂贵等难题。实验显示OmniArch在11类PDE上全面超越专用模型,最高精度提升98.7%,并展现出零样本泛化和上下文学习能力。研究成果被ICML2025接收,相关代码已开源,有望推动科学计算领域的基础模型发展。
2025-08-08 10:16:43
1017
原创 昇思MindSpore开源社区上线智谱GLM-4.5与GLM-4.5-Air大模型
智谱AI发布新一代旗舰模型GLM-4.5,在12项评测基准中表现优异,综合排名全球第三、国产第一。该模型通过昇思MindSpore实现小时级迁移,现已开源并提供详细部署指南。GLM-4.5旗舰版需2台16卡服务器部署,Air版则支持单台8卡服务器运行。魔乐社区作为公益AI平台,提供模型托管及下载服务。开发者可通过Docker容器快速体验,并按照指南完成分布式推理服务部署,支持最长32K上下文处理能力。
2025-08-01 16:17:30
720
原创 昇思MindSpore同步首发Qwen3-30B-A3B-Instruct-2507并上线开源社区
通义千问发布Qwen3-235B-A22B-Instruct-2507新版本,在指令遵循、逻辑推理、数学计算等核心能力上显著提升。该模型已在GPQA、AIME25等多个专业测评中展现优异表现。MindSpore版本现已在开源社区上线,支持4卡Atlas800服务器部署,提供完整推理方案。开发者可通过魔乐社区获取60GB模型权重,使用昇思MindSpore提供的Docker镜像快速体验。新版本采用vLLM-MindSpore推理框架,支持32768上下文长度,可通过API服务化部署。开源社区将持续优化模型性能
2025-08-01 16:11:53
906
原创 昇思MindSpore 2.7版本首发“焕新社区” ——全面升级超大规模集群大模型训推技术
2025世界人工智能大会上,中国移动牵头发布"焕新社区",昇思开源社区同步推出MindSpore AI框架2.7版本。新版框架聚焦大模型训练效率、推理性能及系统可视化,实现MoE模型训练性能提升70%、推理吞吐提升15%。中移九天与昇思深度协同,完成超大规模集群训练优化,训练效率提升超30%。新版本在MoE训练架构、大模型推理性能、在线监测工具三大领域实现突破性升级,包含双模式负载均衡、自定义并行机制、极致量化压缩等20余项技术创新。未来昇思将继续开源开放,携手产业伙伴共建AI生态。
2025-08-01 16:08:23
354
原创 ShuffleNet V1 实现食物识别系统综述
本文详细介绍了一个基于ShuffleNetV1架构的食物识别项目,实现了从环境搭建到模型训练的全流程。项目使用MindSpore2.5.0框架,通过分组卷积和通道混洗等轻量级设计,对多种常见食物进行精准分类。数据处理阶段采用随机裁剪、水平翻转等增强方法,训练过程使用Adam优化器和交叉熵损失函数。实验结果表明系统在移动设备上具有良好的应用前景,同时指出了在实时检测、模型优化等方面的改进空间。该研究为移动端食物识别提供了可行的技术方案。
2025-08-01 15:29:34
690
原创 ShuffleNet V2 实现灾害识别系统综述
本文介绍了一个基于ShuffleNetV2的轻量级自然灾害识别系统。该项目使用MindSpore2.5.0框架,通过环境配置、数据增强、模型构建等步骤,实现了对洪水、火灾、地震等灾害图像的高效分类。系统采用分组卷积和通道混洗机制降低计算复杂度,最后通过全局平均池化输出结果。实验表明该方法在移动设备上具有良好的应用前景。文章详细阐述了从数据处理到模型优化的完整流程,并讨论了存在的挑战和未来改进方向,为轻量级灾害识别系统的开发提供了参考。
2025-08-01 15:26:44
629
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人