MindSpore 架构下的 Prompt Tuning 原理解析

1. MindSpore 总体架构

MindSpore是面向端-边-云全场景的深度学习框架。其典型栈分层如下:

  • 前端(Frontend):以 nn.Cell为核心的网络构建范式、自动微分、数据管道(Dataset)等。
  • 中间表示(MindIR):图级中间表示,承载算子融合、常量折叠、内存分配与形状推断等编译优化。
  • 执行模式:
    • Graph Mode:将 Python 描述的网络转为静态图,进行深度图优化后下发后端(适合昇腾的高性能训练/推理)。
    • PyNative Mode:动态图风格,便于调试与原型验证。
  • 自动并行:内置数据并行、模型并行、流水线并行与切分策略搜索,适配大模型训练。
  • 后端(Backend):对接昇腾(Ascend)、GPU、CPU 等,调用相应算子库执行。

对大模型而言,MindSpore 的 图编译+ 自动并行能显著降低显存开销并提升执行效率,是在昇腾平台进行参数高效微调(如 Prompt Tuning)的关键支撑。


2. Prompt Tuning 基本概念

Prompt Tuning是一种 参数高效微调(PEFT)思路:冻结预训练大模型的主体参数,仅训练规模很小的“提示参数(prompt parameters)”,即可将通用模型适配到新任务。常见变体:

  • Prompt Tuning / Soft Prompt:为输入序列前置一段可学习的连续向量(非离散文本),仅训练这些向量。
  • Prefix Tuning:为每层注意力模块注入一段可学习的 K/V 前缀(不直接改变输入 token),影响注意力分布。
  • P-Tuning v2:用一个小型提示编码器(如 MLP 或轻量 Transformer)生成上下文相关的提示向量,提升表达能力。
  • (对比)LoRA:对线性层施加低秩适配矩阵,也属于 PEFT,但不等同于 Prompt Tuning。

优势:显著减少可训练参数与显存占用,训练更快、迁移更广,适合算力/数据有限的场景。


3. 在 MindSpore 架构中的实现思路

3.1 Soft Prompt Tuning(输入侧)

核心思想:在 embedding 之后、Transformer 编码之前,拼接一段长度为 P的可学习提示向量(形状 [P, H]H为隐藏维),对每个 batch 复制成 [B, P, H]与原始 token embedding [B, L, H]在序列维拼接为 [B, P+L, H]。仅更新提示参数,冻结大模型权重。

实现要点(MindSpore):

  • 使用 Parameter(Tensor(...))定义 soft_promptrequires_grad=True
  • 冻结 backbone:遍历 net.trainable_params(),将非提示参数的 requires_grad=False
  • 注意力 mask与 位置编码(或 RoPE)需相应右移 P位;padding/masking 必须覆盖提示段与真实 token。

3.2 Prefix Tuning(注意力侧)

核心思想:在每一层 Multi-Head Attention 中,构造长度为 P的 K/V 前缀(形如 [B, num_heads, P, head_dim]),与由真实 token 产生的 K/V在序列维拼接;Q仍来自真实 token。这样在不改变输入序列的情况下调控注意力。

实现要点:

  • 为每层准备一个小型前缀生成器(可为直接可学习的参数,或经 MLP 投影)。
  • 在前向传播中,于各层注意力计算前注入前缀 K/V;相应扩展 attn_mask
  • 仍然只训练前缀相关参数。

3.3 P-Tuning v2(提示编码器)

核心思想:使用轻量网络(例如 MLP/小 Transformer)从任务条件、标签描述或输入摘要生成提示向量,解决固定软提示表达力不足的问题。

实现要点:

  • 定义 PromptEncoder(nn.Cell),输入可为任务标签、离散 prompt id、任务描述 embedding 等,输出 [B, P, H]
  • 保持主干模型冻结,仅训练提示编码器参数。
  • 与 4.1/4.2 的注入位置类似:要么拼接到输入 embedding,要么投递到各层注意力的 K/V。

4. 昇腾 + MindSpore 下的性能与工程要点

  • Graph Mode 优先:静态图优化(图算融合、常量折叠、内存复用)对 NPU 至关重要。
  • 混合精度:启用 FP16/BF16 训练提示参数,配合损失缩放稳定数值。
  • 固定形状/对齐长度:对序列长度进行 padding 到固定值,利于编译优化与算子并行。
  • 通信与并行:Prompt Tuning 通常参数小,数据并行(DP)即可;若大 batch,可结合梯度累积。
  • 编译缓存:复用图编译缓存能缩短反复实验的冷启动时间。
  • 算子选择:尽量复用原模型 embedding/attention 的高效算子;前缀注入避免 Python 侧循环。
### Prompt Tuning 的工作原理及实现机制 Prompt Tuning 是一种针对大语言模型(LLMs)的高效参数微调技术,它通过调整少量可学习参数来引导模型完成特定任务,而不是对整个模型进行端到端的 Fine-tuning。这种方法的核心在于设计一组嵌入向量作为提示(Prompt),这些提示可以指导模型生成期望的结果。 #### 工作原理 Prompt Tuning 的基本思想是在输入序列前附加一系列连续的嵌入向量(称为软提示,Soft Prompts)。这些软提示会被视为额外的上下文信息,帮助模型更好地理解任务需求[^1]。相比于传统的方法,Prompt Tuning 不修改原始模型权重,而是仅优化这些新增加的嵌入向量。这种方式显著减少了计算成本和存储开销。 具体来说,Prompt Tuning 可分为以下几个方面: 1. **软提示的设计** 软提示是一组随机初始化的嵌入向量,通常位于输入 token 序列之前。它们的作用类似于自然语言中的指令或背景描述,用于塑造模型的行为模式[^2]。例如,在分类任务中,可以通过定义不同的 soft prompts 来表示各类别的特征。 2. **固定主干网络** 主干网络即预训练的语言模型保持不变,不参与反向传播更新过程。这使得 Prompt Tuning 成为一种轻量化方案,适用于资源受限环境下的部署场景[^3]。 3. **目标函数设定** 训练过程中,损失函数一般基于下游任务的具体要求制定,如交叉熵损失常用于监督学习框架下评估预测分布与真实标签之间的差异程度。通过对 soft prompts 施加梯度下降操作逐步逼近最优解。 4. **扩展至复杂任务** 尽管简单形式的 Prompt Tuning 在许多标准评测集上表现出色,但对于某些复杂的 token-level 或结构化输出任务可能效果有限。为此研究者提出了多种改进措施,包括但不限于引入更灵活的 verbalizers 映射策略处理无明确语义类别情况;或者结合其他先进技术如 Chain-of-Thought 提升推理能力等。 以下是 Python 实现的一个简化版示例代码片段展示如何应用 PyTorch 构建并训练 Soft Prompts: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer class PromptTuningModel(torch.nn.Module): def __init__(self, model_name_or_path, num_soft_tokens=10): super().__init__() self.base_model = AutoModelForCausalLM.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) # Initialize the soft tokens as learnable embeddings. vocab_size = tokenizer.vocab_size embedding_dim = self.base_model.config.hidden_size self.soft_prompt_embeddings = torch.nn.Parameter( data=torch.randn(num_soft_tokens, embedding_dim), requires_grad=True, ) def forward(self, input_ids, attention_mask=None, labels=None): batch_size = input_ids.size(0) # Prepend soft tokens to each example in the batch. inputs_embeds = self.base_model.get_input_embeddings()(input_ids) expanded_soft_prompts = ( self.soft_prompt_embeddings.unsqueeze(0).expand(batch_size, -1, -1)) full_inputs_embeds = torch.cat([expanded_soft_prompts, inputs_embeds], dim=1) if attention_mask is not None: new_attention_mask = torch.ones((batch_size, expanded_soft_prompts.shape[1]), device=input_ids.device) attention_mask = torch.cat([new_attention_mask, attention_mask], dim=-1) outputs = self.base_model(inputs_embeds=full_inputs_embeds, attention_mask=attention_mask, labels=labels) return outputs.loss, outputs.logits # Example usage model = PromptTuningModel('gpt2') optimizer = torch.optim.AdamW(model.parameters(), lr=5e-4) dummy_input = {'input_ids': torch.randint(low=0, high=model.base_model.config.vocab_size, size=(8, 16))} loss, _ = model(**dummy_input) loss.backward() optimizer.step() ``` 上述脚本展示了创建一个支持 Prompt Tuning 的 GPT-2 模型实例的过程,并演示了单步优化流程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值