guidance使用方式问题

本文档提供了DJI Guidance系统的障碍物感知功能配置步骤,包括SDK与障碍物感知功能的同时启用方法、相机数据及深度数据的订阅限制、以及确保功能正常运行所需的传感器安装要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注意:guidance的左右相机数据都是矫正过后的

1、经验证,sdk和障碍物感知功能可以同时开启

2、由于guidance usb的带宽问题,不可能同时订阅相机数据和深度数据,并且最多只能订阅两个方向上的深度图数据;具体带宽是多少没有查到;可以参考下图:


3、开启障碍物感知功能(配合M100使用):

(1)开启dji GUIDANCE的障碍物感知功能

(2)开机dji go app的guidance

(3)5路传感器必须全部安装,并且安装的位置和方向正确

(4)飞行高度要大于0.5米



### 扩散模型中的显式指导 在扩散模型中,显式指导是一种技术手段,旨在通过特定机制增强模型生成样本的质量和可控性。显式指导允许用户指定某些属性或条件,使得生成过程能够更好地遵循这些指示。 #### 显式指导的工作原理 显式指导通常涉及调整潜在空间中的表示形式来反映所需的特性。对于基于潜变量的扩散模型而言,在训练过程中引入额外损失项可以实现这一点[^2]。例如,在高分辨率图像合成任务中,可以通过修改噪声注入策略或者优化目标函数的方式来进行更精细地控制。 此外,为了克服概念抑制现象——即当多个不同类别特征共同作用时可能出现相互干扰的情况——研究者提出了利用向量运算的方法对各类别间的关系建模并加以调节[^1]。这种方法不仅有助于提高生成质量,还能让用户更加直观地操作所期望的变化方向。 ```python import torch def apply_explicit_guidance(latent_vector, guidance_weight=1.0): """ 应用于潜在向量上的显式指导函数 参数: latent_vector (torch.Tensor): 输入的潜在向量 guidance_weight (float): 控制指导强度的权重,默认为1.0 返回: guided_latent_vector (torch.Tensor): 经过指导后的潜在向量 """ # 假设这里有一个预定义好的指导信号 tensor `guidance_signal` guidance_signal = ... # 定义具体的指导逻辑 # 将指导应用于输入的潜在向量上 guided_latent_vector = latent_vector + guidance_weight * guidance_signal return guided_latent_vector ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值