CCF-CSP第31次认证第2题 --《坐标变换其二》(前缀算法满分)

5298. 坐标变换(其二) - AcWing题库

对于平面直角坐标系上的坐标 (x,y)(x,y),小 PP 定义了如下两种操作:

  1. 拉伸 kk 倍:横坐标 xx 变为 kxkx,纵坐标 yy 变为 kyky;
  2. 旋转 θθ:将坐标 (x,y)(x,y) 绕坐标原点 (0,0)(0,0) 逆时针旋转 θθ 弧度(0≤θ<2π0≤θ<2π)。易知旋转后的横坐标为 xcosθ−ysinθxcos⁡θ−ysin⁡θ,纵坐标为 xsinθ+ycosθxsin⁡θ+ycos⁡θ。

设定好了包含 nn 个操作的序列 (t1,t2,…,tn)(t1,t2,…,tn) 后,小 PP 又定义了如下查询:

  • i j x y:坐标 (x,y)(x,y) 经过操作 ti,…,tjti,…,tj(1≤i≤j≤n1≤i≤j≤n)后的新坐标。

对于给定的操作序列,试计算 mm 个查询的结果。

输入格式

输入共 n+m+1n+m+1 行。

输入的第一行包含空格分隔的两个正整数 nn 和 mm,分别表示操作和查询个数。

接下来 nn 行依次输入 nn 个操作,每行包含空格分隔的一个整数(操作类型)和一个实数(kk 或 θθ),形如 1 k(表示拉伸 kk 倍)或 2 θ(表示旋转 θθ)。

接下来 mm 行依次输入 mm 个查询,每行包含空格分隔的四个整数 ii、jj、xx 和 yy,含义如前文所述。

输出格式

输出共 mm 行,每行包含空格分隔的两个实数,表示对应查询的结果。

如果你输出的浮点数与参考结果相比,满足绝对误差不大于 0.10.1,则该测试点满分,否则不得分。

数据范围

1≤n,m≤1051≤n,m≤105,
输入的坐标均为整数且绝对值不超过 106106,
单个拉伸操作的系数 k∈[0.5,2]k∈[0.5,2],
任意操作区间 ti,…,tjti,…,tj(1≤i≤j≤n1≤i≤j≤n)内拉伸系数 kk 的乘积在 [0.001,1000][0.001,1000] 范围内。

输入样例:
10 5
2 0.59
2 4.956
1 0.997
1 1.364
1 1.242
1 0.82
2 2.824
1 0.716
2 0.178
2 4.094
1 6 -953188 -946637
1 9 969538 848081
4 7 -114758 522223
1 9 -535079 601597
8 8 159430 -511187
输出样例:
-1858706.758 -83259.993
-1261428.46 201113.678
-75099.123 -738950.159
-119179.897 -789457.532
114151.88 -366009.892
样例解释

第五个查询仅对输入坐标使用了操作八:拉伸 0.7160.716 倍。

横坐标:159430×0.716=114151.88159430×0.716=114151.88

纵坐标:−511187×0.716=−366009.892−511187×0.716=−366009.892

由于具体计算方式不同,程序输出结果可能与真实值有微小差异,样例输出仅保留了三位小数。

 题解:

#include <bits/stdc++.h>
using namespace std;

int main()
{
	int n, m;
	cin>>n>>m;
	vector<int> type(n);
	vector<double> param(n);
	for(int i=0;i<n;i++){
		cin>>type[i]>>param[i];
	}
	
	vector<double> prefix_ji(n+1, 1.0);// 缩放因子的前缀积
	vector<double> prefix_he(n+1, 0.0);// 旋转角度的前缀和
	for(int i=1;i<=n;i++){
		if(type[i-1] == 1){
			prefix_he[i] = prefix_he[i-1];
			prefix_ji[i] = prefix_ji[i-1] * param[i-1];
		}
		else{
			prefix_he[i] = prefix_he[i-1] + param[i-1];
			prefix_ji[i] = prefix_ji[i-1];
		}
	}

    // 设置输出精度
	cout<< fixed << setprecision(3);

    // 处理m个查询
	while(m--){
		int t_i, t_j;
		double x, y;
		cin>>t_i>>t_j>>x>>y;
		
        // 计算区间的总缩放因子和总旋转角度
		double rot = prefix_he[t_j] - prefix_he[t_i-1];
		double scale = prefix_ji[t_j] / prefix_ji[t_i-1];
		
        //缩放
		x *= scale;
		y *= scale;
		
        //旋转
		double x1 = x, y1 = y;
		x = x1 * cos(rot) - y1 * sin(rot);
		y = x1 * sin(rot) + y1 * cos(rot);
		
		cout<<x<<" "<<y<<endl;
	}
	return 0;
}

通过前缀预处理,可以将时间复杂度从 O(m * n) 降低到 O(n + m),避免了超时问题。

前缀积和前缀和算法学习

【前缀和与前缀积】:原理、实现与应用-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值