对于平面直角坐标系上的坐标 (x,y)(x,y),小 PP 定义了如下两种操作:
- 拉伸 kk 倍:横坐标 xx 变为 kxkx,纵坐标 yy 变为 kyky;
- 旋转 θθ:将坐标 (x,y)(x,y) 绕坐标原点 (0,0)(0,0) 逆时针旋转 θθ 弧度(0≤θ<2π0≤θ<2π)。易知旋转后的横坐标为 xcosθ−ysinθxcosθ−ysinθ,纵坐标为 xsinθ+ycosθxsinθ+ycosθ。
设定好了包含 nn 个操作的序列 (t1,t2,…,tn)(t1,t2,…,tn) 后,小 PP 又定义了如下查询:
i j x y
:坐标 (x,y)(x,y) 经过操作 ti,…,tjti,…,tj(1≤i≤j≤n1≤i≤j≤n)后的新坐标。对于给定的操作序列,试计算 mm 个查询的结果。
输入格式
输入共 n+m+1n+m+1 行。
输入的第一行包含空格分隔的两个正整数 nn 和 mm,分别表示操作和查询个数。
接下来 nn 行依次输入 nn 个操作,每行包含空格分隔的一个整数(操作类型)和一个实数(kk 或 θθ),形如
1 k
(表示拉伸 kk 倍)或2 θ
(表示旋转 θθ)。接下来 mm 行依次输入 mm 个查询,每行包含空格分隔的四个整数 ii、jj、xx 和 yy,含义如前文所述。
输出格式
输出共 mm 行,每行包含空格分隔的两个实数,表示对应查询的结果。
如果你输出的浮点数与参考结果相比,满足绝对误差不大于 0.10.1,则该测试点满分,否则不得分。
数据范围
1≤n,m≤1051≤n,m≤105,
输入的坐标均为整数且绝对值不超过 106106,
单个拉伸操作的系数 k∈[0.5,2]k∈[0.5,2],
任意操作区间 ti,…,tjti,…,tj(1≤i≤j≤n1≤i≤j≤n)内拉伸系数 kk 的乘积在 [0.001,1000][0.001,1000] 范围内。输入样例:
10 5 2 0.59 2 4.956 1 0.997 1 1.364 1 1.242 1 0.82 2 2.824 1 0.716 2 0.178 2 4.094 1 6 -953188 -946637 1 9 969538 848081 4 7 -114758 522223 1 9 -535079 601597 8 8 159430 -511187
输出样例:
-1858706.758 -83259.993 -1261428.46 201113.678 -75099.123 -738950.159 -119179.897 -789457.532 114151.88 -366009.892
样例解释
第五个查询仅对输入坐标使用了操作八:拉伸 0.7160.716 倍。
横坐标:159430×0.716=114151.88159430×0.716=114151.88
纵坐标:−511187×0.716=−366009.892−511187×0.716=−366009.892
由于具体计算方式不同,程序输出结果可能与真实值有微小差异,样例输出仅保留了三位小数。
题解:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, m;
cin>>n>>m;
vector<int> type(n);
vector<double> param(n);
for(int i=0;i<n;i++){
cin>>type[i]>>param[i];
}
vector<double> prefix_ji(n+1, 1.0);// 缩放因子的前缀积
vector<double> prefix_he(n+1, 0.0);// 旋转角度的前缀和
for(int i=1;i<=n;i++){
if(type[i-1] == 1){
prefix_he[i] = prefix_he[i-1];
prefix_ji[i] = prefix_ji[i-1] * param[i-1];
}
else{
prefix_he[i] = prefix_he[i-1] + param[i-1];
prefix_ji[i] = prefix_ji[i-1];
}
}
// 设置输出精度
cout<< fixed << setprecision(3);
// 处理m个查询
while(m--){
int t_i, t_j;
double x, y;
cin>>t_i>>t_j>>x>>y;
// 计算区间的总缩放因子和总旋转角度
double rot = prefix_he[t_j] - prefix_he[t_i-1];
double scale = prefix_ji[t_j] / prefix_ji[t_i-1];
//缩放
x *= scale;
y *= scale;
//旋转
double x1 = x, y1 = y;
x = x1 * cos(rot) - y1 * sin(rot);
y = x1 * sin(rot) + y1 * cos(rot);
cout<<x<<" "<<y<<endl;
}
return 0;
}
通过前缀预处理,可以将时间复杂度从 O(m * n)
降低到 O(n + m)
,避免了超时问题。
前缀积和前缀和算法学习