长期换衣行人重识别(Long-Term Clothes-Changing Person Reid)数据集汇总

总览

在长期换衣行人重识别的任务当中,数据集的获取(尤其是对于学术环境下)是一个难点,主要的困难有以下几点:

  1. 采集大规模的数据集比较困难。
  2. 采集不同的衣服的数据集比较困难。
  3. 采集不同衣服不同角度的数据集比较困难。

目前也有一些数据集或多或少的能够解决相关的问题,在下面按照时间顺序进行一个总结,总结的具体内容会尽量简短的概括不同数据集的优缺点,以及相关的改进措施和未来的方向。

目前换衣数据集的主要问题

  1. 缺乏大规模的数据集(表现比较好的PRCC数据集也只有300+的id)
  2. 缺乏基于视频的数据集(可以提取步态特征,而步态我认为是最有力的特征),目前几乎全部的数据集都是基于单帧图片的。
  3. 大规模的数据集背景比较杂乱:例如LaST和Celeb-Reid,同时这两个数据集相互之间的cross-testing也比较好,但对于其他数据集的cross-testing比较差,因为他们俩采集过程比较相似(街拍和视频截图)。

数据集换衣/总体情况集统计

目前为止,完全换衣情况的数据集有:Deep Change,PRCC和Celebrities-reID, 总体的纯换衣服的子集占数据集总数如下图所示:

表格中换衣/总体代表有多套衣服的id占总id的比例。
在这里插入图片描述

DeepChange(2021)

DeepChange是2021年5月份新提出的数据集,包括1121个行人的170000<

### REID 数据集概述 REID重识别数据集是计算机视觉领域中的重要研究方向之一,主要用于解决跨摄像头场景下的行人匹配问题。以下是关于 REID 数据集中最具代表性的 DukeMTMC-reID 的详细介绍。 #### 1. **DukeMTMC-reID 数据集** DukeMTMC-reID 是 DukeMTMC 数据集的一个子集,专注于行人重识别任务。该数据集的特点如下: - 来源:DukeMTMC 数据集是由 8 个同步摄像机录制的大规模多目标多摄像头行人跟踪数据集[^2]。 - 图像数量:整个数据集包含约 3.6GB 的数据量[^3]。 - 身份分布: - 训练集:702 个身份,共 2,196 张图片。 - 测试集:702 个身份,共 2,636 张图片。 - 干扰项:额外包含 408 个未标注的身份作为干扰项[^3]。 - Bounding Box:所有图像均经过人工标注,确保边界框的准确性[^4]。 #### 2. **下载方式** DukeMTMC-reID 数据集可以通过官方链接或其他公共资源获取。具体方法如下: - 官方项目地址:[https://gitcode.com/Resource-Bundle-Collection/78395](https://gitcode.com/Resource-Bundle-Collection/78395)[^2]。 - 如果无法访问上述链接,可以尝试通过学术搜索引擎查找相关资源或联系作者团队获取最新版本的数据集。 #### 3. **使用指南** 在实际使用中,DukeMTMC-reID 数据集通常被划分为训练集和测试集两部分。其主要用途包括但不限于以下方面: - **模型训练**:利用训练集中的 702 个身份及其对应的图片来构建行人特征提取网络。 - **性能评估**:基于测试集中的查询图片和画廊图片计算相似度得分,并采用 Rank-1 准确率、mAP (Mean Average Precision) 等指标衡量算法效果[^1]。 下面是一段简单的 Python 示例代码,展示如何加载并预处理 DukeMTMC-reID 数据集: ```python import os from PIL import Image import numpy as np def load_dukemtmc_reid(data_dir): """ 加载 DukeMTMC-reID 数据集 :param data_dir: 数据集根目录路径 :return: train_images, test_images """ train_dir = os.path.join(data_dir, 'train') query_dir = os.path.join(data_dir, 'query') gallery_dir = os.path.join(data_dir, 'gallery') def read_images(dir_path): images = [] labels = [] for img_name in os.listdir(dir_path): if not img_name.endswith('.jpg'): continue label = int(img_name.split('_')[0]) image = Image.open(os.path.join(dir_path, img_name)) images.append(np.array(image)) labels.append(label) return images, labels train_images, train_labels = read_images(train_dir) query_images, _ = read_images(query_dir) gallery_images, _ = read_images(gallery_dir) return train_images, train_labels, query_images, gallery_images ``` 此函数实现了对 DukeMTMC-reID 数据集的基本读取操作,返回训练集、查询集以及画廊集的内容。 --- ###
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KingsMan666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值