链接
前言
题目
给定一个整数数组 prices
,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
关键
- 得确定有几个状态,状态怎么分类
- 跟题Leetcode|122. 买卖股票的最佳时机 II类似,就是多加了个手续费
本人思路
- 动态规划
- 简化问题:有2种状态:
- dp0:手上没股票
- dp1:手上有股票
- 初始化状态:
- dp0 = 0:一开始什么都不买,收益为0
- dp1 = -prices[0]:减去第一次买入股票的费用
- 状态转换:
- dp0 = max(dp0, dp1+prices[i]-fee):两种情况取最大值:一是延续上一dp0的状态,二是手上原来有股票但是现在卖出的情况,注意减去手续费,因为已经完成了交易
- dp1 = max(dp1, dp0-prices[i]):两种情况取最大值:一是延续上一dp1的状态,二是手上原来没股票但是现在买入的情况
- 最终要得到最大收益肯定是在股票卖出的情况下,即dp0
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
if len(prices) < 2:
return 0
dp0 = 0
dp1 = -prices[0]
for i in range(1, len(prices)):
dp0 = max(dp0, dp1+prices[i]-fee)
dp1 = max(dp1, dp0-prices[i])
return dp0