Leetcode|714. 买卖股票的最佳时机含手续费【笔记】

该博客探讨了如何使用动态规划解决LeetCode上的一个问题——在考虑交易手续费的情况下找到买卖股票的最佳时机,以实现最大利润。作者通过分析示例和关键思路,详细解释了动态规划的状态转移方程,并给出了Python代码实现。最后,总结了问题的核心在于处理有手续费的交易,并提供了参考链接。

714. 买卖股票的最佳时机含手续费【笔记】

链接

https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/

前言

题目

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

关键

本人思路

  • 动态规划
  • 简化问题:有2种状态:
    • dp0:手上没股票
    • dp1:手上有股票
  • 初始化状态:
    • dp0 = 0:一开始什么都不买,收益为0
    • dp1 = -prices[0]:减去第一次买入股票的费用
  • 状态转换:
    • dp0 = max(dp0, dp1+prices[i]-fee):两种情况取最大值:一是延续上一dp0的状态,二是手上原来有股票但是现在卖出的情况,注意减去手续费,因为已经完成了交易
    • dp1 = max(dp1, dp0-prices[i]):两种情况取最大值:一是延续上一dp1的状态,二是手上原来没股票但是现在买入的情况
  • 最终要得到最大收益肯定是在股票卖出的情况下,即dp0
class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        if len(prices) < 2:
            return 0
        dp0 = 0
        dp1 = -prices[0]
        for i in range(1, len(prices)):
            dp0 = max(dp0, dp1+prices[i]-fee)
            dp1 = max(dp1, dp0-prices[i])
        return dp0

疑问

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值