leetcode 74. 搜索二维矩阵【二分】

本文介绍了一种高效的算法,用于判断目标值是否存在于一个特殊排序的二维矩阵中。该算法通过将二维数组映射为一维数组,利用二分查找原理进行快速定位,实现了对大规模数据的有效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:74. 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true

示例 2:

输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false

程序说明:

将二维数组映射为一维数组,下标之间的关系:
row = index / n
col = index % n

代码如下:

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length;
        if(m == 0)
            return false;
        int n = matrix[0].length;
        int l = 0, r = m * n - 1;

        while(l <= r) {
            int mid = (l + r) / 2;
            int tmp = matrix[mid / n][mid % n];
            if(target == tmp)
                return true;
            else if(target < tmp)
                r = mid - 1;
            else
                l = mid + 1;
        }
        return false;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值