【MATLAB源码-第328期】基于matlab的NOMA系统仿真,对比不同功率分配算法(FPA,FSPA,FTPA)的系统吞吐量,用户公平性和算法复杂度。

操作环境:

MATLAB 2022a

1、算法描述

NOMA(非正交多址接入)系统在无线通信领域是一项重要的技术,其通过不同的功率分配策略实现多个用户共享同一频带资源。功率分配策略的选择对系统的吞吐量、用户公平性以及算法的复杂度产生直接影响。NOMA系统中的功率分配算法,如FPA(固定功率分配算法)、FSPA(遍历搜索功率分配算法)和FTPA(分数功率分配算法)是目前常见的三种策略,它们在性能、复杂度以及实现方式上有所不同。在这些算法的应用过程中,系统吞吐量、用户公平性和算法复杂度是评估其效果的关键指标。

NOMA系统功率分配算法概述

NOMA系统利用非正交的方式,使得多个用户共享同一频带资源。这种方式突破了传统的正交多址接入(如TDMA、FDMA等)对用户的分配限制,提高了频谱利用效率。在NOMA中,用户之间并不是完全分开传输,而是通过不同的功率级别进行区分。为了提高系统的吞吐量和公平性,需要根据每个用户的信道条件进行合理的功率分配,这时就需要依赖有效的功率分配算法。

固定功率分配算法(FPA)

固定功率分配算法是一种简单的功率分配方法。它通过预先设定的固定比例来为用户分配功率,而不考虑用户信道的变化或增益。具体来说,FPA算法将系统总功率按照一定的比例分配给不同的用户。由于这种方法没有考虑每个用户的信道状况,它的优势在于实现简单、计算开销小,适用于实时性的要求较高的场景。然而,这种分配方式导致系统的吞吐量无法达到最优,因为信道较差的用户可能会分配过多的功率,而信道较好的用户的功率分配也无法根据实际需求动态调整。因此,FPA在吞吐量和公平性方面相对较差,尤其是在多用户的场景下,公平性问题尤为突出。

遍历搜索功率分配算法(FSPA)

遍历搜索功率分配算法(FSPA)是一种更加精细的功率分配策略,它通过遍历所有可能的功率分配方案来寻找最优解。FSPA算法在计算过程中需要考虑到用户的信道增益,依据信道条件动态地调整功率分配,以此来最大化系统的吞吐量。通过这种方式,FSPA能够实现更高的吞吐量,因为它选择了最适合的功率分配方案,使得强信道用户获得更多的功率,弱信道用户获得较少的功率,从而更好地利用系统的总功率。然而,这种方法的缺点是计算复杂度较高,需要大量的计算资源,适用于离线优化的场景,因此在实时通信中可能不适用。

分数功率分配算法(FTPA)

分数功率分配算法(FTPA)基于信道增益的动态分配策略。不同于FPA的固定功率分配和FSPA的遍历搜索,FTPA通过动态调整每个用户的功率分配比例,以达到较好的吞吐量和公平性平衡。FTPA算法根据每个用户的信道增益,采用一种分数形式的功率分配,即给信道较好的用户分配更多的功率,信道较差的用户获得较少的功率。与FPA和FSPA相比,FTPA通过引入非均匀的功率分配,使得弱用户的公平性得到了更多的保证。FTPA的参数α可以控制功率分配的非均匀程度,适应不同的网络需求。虽然FTPA在性能上优于FPA和FSPA,但其计算复杂度也相对较高,因为需要根据实时的信道信息动态调整功率分配策略。

系统吞吐量

吞吐量是衡量NOMA系统性能的重要指标,它代表了系统能够在单位时间内传输的总数据量。在NOMA系统中,吞吐量的提升依赖于合理的功率分配。不同的功率分配算法对系统吞吐量的影响显著。FSPA通过遍历所有功率分配方案,能够找到最优的功率分配比例,从而最大化系统吞吐量。实验结果表明,FSPA的吞吐量表现最好,因为它能够精确地根据信道条件选择功率分配方案。与FSPA相比,FPA的吞吐量较低,因为固定的功率分配比例无法根据用户的实际信道状况进行调整。FTPA通过动态调整功率分配,虽然不能达到FSPA的最大吞吐量,但它能够在吞吐量和公平性之间做出较好的平衡。因此,FTPA在保证一定吞吐量的同时,还能确保较高的用户公平性。

用户公平性

在多用户系统中,公平性是另一个重要的评价指标,尤其是在NOMA系统中,用户的信道条件差异较大,公平性问题更加突出。FPA算法由于其固定的功率分配方式,通常会导致强用户占据更多的资源,而弱用户则受到限制,造成较大的资源不平衡,导致用户之间的公平性较差。FSPA虽然能够实现最大吞吐量,但由于其注重的是吞吐量的优化,可能导致公平性不佳,特别是在用户信道差异较大的情况下,弱用户的吞吐量较低。而FTPA则通过引入α参数,使得系统能够在一定程度上调节功率分配的公平性,从而提高系统的整体公平性。因此,FTPA算法在用户公平性方面表现最好,尤其是在信道条件差异较大的情况下,它能够有效保障弱用户的通信质量。

算法复杂度

功率分配算法的复杂度直接影响其实现的可行性和效率。FPA的计算复杂度最低,因为它不需要根据实时信道信息进行动态调整,只需要根据预设的功率比例进行功率分配,因此计算开销较小,适合实时系统中使用。然而,FPA的简单性也意味着其性能较差,无法优化系统吞吐量和公平性。FSPA的复杂度较高,因为它通过遍历所有可能的功率分配方案来寻找最优解,这需要大量的计算资源和时间,适合于离线优化的场景。FTPA的复杂度介于FPA和FSPA之间,因为它需要动态调整功率分配,并且考虑信道增益的差异,虽然其计算复杂度不如FSPA高,但仍然需要较多的计算资源。因此,在选择功率分配算法时,需要在性能和复杂度之间进行权衡。

总结

NOMA系统中的功率分配算法对于系统的吞吐量、用户公平性和算法复杂度都有着至关重要的影响。在吞吐量方面,FSPA表现最佳,能够最大化系统吞吐量;在公平性方面,FTPA通过动态调整功率分配,能够平衡强弱用户的资源分配,保证系统的公平性;在算法复杂度方面,FPA由于其简单的固定分配方式,具有最低的计算复杂度,适用于实时系统。而FSPA和FTPA则适用于对吞吐量和公平性有较高要求的场景,但其计算复杂度较高,需要根据具体的应用需求选择合适的算法。

根据不同的应用场景和需求,选择合适的功率分配算法可以有效提升NOMA系统的性能,在吞吐量、用户公平性和算法复杂度之间找到最佳的平衡点。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值