【MATLAB源码-第366期】基于matlab的斑鬣狗优化算法(SHO)机器人栅格路径规划,输出做短路径图和适应度曲线.

操作环境:

MATLAB 2024a

1、算法描述

斑鬣狗优化算法(Spotted Hyena Optimizer,简称SHO)是一种新型的自然启发式智能优化算法,其灵感来源于斑鬣狗在自然界中的社会结构、群体合作、捕猎行为等特征。这种算法在求解复杂优化问题时表现出较强的收敛能力和全局搜索能力,在工程优化、图像处理、路径规划、特征选择等多个领域都有潜在的应用价值。

在深入了解斑鬣狗优化算法之前,我们可以先从斑鬣狗这种动物的行为开始谈起。斑鬣狗是生活在非洲草原上的群居性猛兽,它们拥有极强的社会性和组织性,常以群体的方式活动。斑鬣狗的群体中存在明确的等级制度,个体之间通过协作进行捕猎和觅食。其捕猎策略通常表现为多只成员包围猎物,逐渐逼近,并通过集体合作达到最终捕获猎物的目标。这种合作式、动态调整的策略为优化算法的设计提供了重要启发。

斑鬣狗优化算法正是借鉴了斑鬣狗的群体智慧与协同捕猎机制,通过构建模拟的斑鬣狗种群,以每个个体表示一个潜在的解,并通过动态更新的位置与策略,在搜索空间中不断趋近最优解。这种算法可以归类为群体智能算法,与蚁群优化、粒子群优化、灰狼优化等算法有一定相似之处,但它独特的社会结构模拟与协作方式为其带来了新颖的特点。

整个斑鬣狗优化算法的核心思想可以归结为“探索与开发”的动态平衡机制。在群体搜索的初期阶段,算法鼓励个体在更广泛的区域内探索潜在解,从而增加搜索的多样性,防止陷入局部最优。而随着搜索过程的进行,算法逐步引导个体向目前最有潜力的区域集中,也就是进行开发,以加速收敛到最优解。

具体而言,SHO算法通常包含以下几个关键步骤:初始化种群、评估个体适应度、更新位置、选择主导猎手、动态调整策略、迭代优化等。这些步骤在逻辑上紧密相连,形成一个完整的优化过程。

在算法的初始化阶段,模拟的斑鬣狗种群被赋予一组初始的位置,也就是说,它们在搜索空间中被随机分布。这些位置代表了不同的解,每个斑鬣狗个体通过某种方式被编码,使其能够表示实际问题中的一个解候选项。初始种群的多样性对后续搜索结果具有重要影响,良好的初始化策略可以帮助算法跳出局部最优,从而提高整体性能。

在适应度评估阶段,每一个斑鬣狗个体根据其所在位置的质量进行评估,也就是说,算法会计算每个个体所代表的解在目标函数下的优劣程度。适应度评估是整个优化过程中不可或缺的部分,因为它决定了哪些个体将被认为是“优秀”的猎手,从而引导其他个体向其靠拢。

紧接着的就是主导猎手的选择。斑鬣狗群体中存在所谓的“主导猎手”角色,通常是根据适应度排名选出的若干个体,它们在群体中起到领导作用,主导捕猎方向。在算法中,主导猎手会引导其余成员向更优的区域移动,这种机制类似于粒子群优化中全局最优粒子的引导作用,但SHO允许多个主导个体存在,从而提高了算法的鲁棒性和多样性。

在位置更新阶段,斑鬣狗个体会根据主导猎手的位置进行调整。这个过程不仅仅是简单地靠近优秀解那么简单,而是模拟了斑鬣狗在围捕猎物过程中不断接近、试探、绕行、变换方位的行为。因此,在算法中,这一过程通常包括多个子策略,如围捕半径的动态调整、个体间的距离权衡、位置扰动等。这些策略可以帮助斑鬣狗群体在保持一定多样性的同时,更有效地接近最优解。

另一个重要特点是SHO算法的“探索与开发”动态权重机制。在不同的迭代阶段,算法会自动调整个体对探索新区域和开发已知优质区域的重视程度。初始阶段更倾向于探索,因为在全局搜索阶段需要获取尽可能多的可行解;而在迭代末期,算法则更加注重开发,集中力量精细化搜索最优区域。这种机制使得SHO具有良好的收敛特性和避免早熟的能力。

值得一提的是,斑鬣狗优化算法在设计中还融入了自然选择与遗传变异的思想。在某些变种中,算法可能引入个体之间的信息交叉或突变,以增强种群的多样性。这种设计进一步提升了算法跳出局部最优的能力,使其在处理高维复杂问题时更具优势。

从应用角度来看,SHO算法具备较强的通用性和灵活性。它可以应用于各种连续优化、组合优化、约束优化问题。比如在图像处理领域,SHO可以用于图像分割、图像匹配等任务;在路径规划领域,它可以用于机器人路径优化、车辆调度等问题;在特征选择和机器学习模型训练中,SHO也能发挥显著效果。实际应用中,根据问题的特点,研究人员还会对SHO进行改进或混合设计,例如与遗传算法、差分进化、粒子群优化等算法进行融合,以提升其性能。

与其他群体智能算法相比,SHO具有多个突出的优势。首先是其模拟的行为机制更贴近真实生态过程,捕猎模型复杂而真实,因此在逼近最优解的策略上更加自然与高效。其次是其对多主导个体的支持机制,使得算法在多模态问题中表现良好,不容易陷入局部最优。此外,SHO的参数设置较为简单,便于工程实现和问题推广。

当然,SHO算法也存在一些挑战与不足。例如,在处理大规模高维数据时,可能会面临搜索速度变慢、内存消耗增加等问题;在收敛精度方面,可能不如某些专用的局部优化算法高。针对这些问题,研究者们提出了一些改进措施,如自适应调节策略、引入混合机制、引入局部搜索算子等,这些方法能够在一定程度上弥补原算法的缺陷。

在近年来的智能优化研究中,SHO作为一种较新的算法,受到了越来越多学者的关注。它的理论基础日益完善,应用场景不断拓展,并与其他算法形成良好的互补关系。例如,有研究将SHO应用于神经网络训练,优化其权重参数,从而提升分类精度和泛化能力;也有研究将其与模糊系统相结合,用于复杂系统的建模与控制。

总结而言,斑鬣狗优化算法是一种以自然生态系统为基础,融合智能行为、动态协作和自适应调整的优化方法。它通过模拟斑鬣狗的群体狩猎过程,构建了一个结构清晰、策略丰富的搜索机制,实现了全局搜索与局部开发之间的高效协调。在各种优化问题中展现出良好的性能和应用前景。随着对算法机制的进一步研究和技术手段的不断完善,SHO有望在智能计算、工程优化、深度学习等领域发挥更大的作用,成为智能优化算法家族中的一员重要成员。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值