摘要:
本文提出了一种改进的WIoU损失函数,结合了最新的研究成果,并引入了具有动态聚焦机制的边界框回归损失,以提升计算机视觉中目标检测算法的性能。我们进一步引入了基于注意力的损失WIoU函数(BBR),通过计算目标边界框的注意力权重来调整损失函数,从而改善模型对重要目标的关注程度。实验证明,在多个标准数据集上,我们的改进方法在性能方面超越了传统的CIoU和SIoU指标。本文还提供了相应的源代码以供参考。
-
引言
目标检测是计算机视觉中的经典问题之一,其在各种场景下都有广泛的应用。然而,传统的目标检测算法在准确性和速度方面存在一些局限性。为了提高目标检测算法的性能,研究人员提出了许多改进方法,其中损失函数的设计是关键因素之一。本文针对目标检测算法中的损失函数进行了改进,引入了最新的WIoU损失函数和动态聚焦机制的边界框回归损失。 -
改进的WIoU损失函数
WIoU(Weighted IoU)损失函数是一种基于IoU的评价指标,用于度量预测边界框与真实边界框之间的相似度。我们对WIoU损失函数进行了改进,采用了最新的研究成果,以提高目标检测算法的性能。
代码示例:
def compute_iou(box1, box2