YOLOv8增强小目标检测能力:ODConv+ConvNeXt在计算机视觉中的应用

本文探讨了如何使用ODConv和ConvNeXt提升YOLOv8在小目标检测上的性能。ODConv通过目标感知卷积增强网络目标理解,ConvNeXt通过多通道交叉卷积提取丰富特征,两者结合显著提升了YOLOv8对小目标的检测准确度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测是计算机视觉领域的重要任务之一,而对于小目标的准确检测一直是一个具有挑战性的问题。为了提升YOLOv8算法在小目标检测上的性能,研究人员提出了一种创新的方法,即采用ODConv和ConvNeXt结构来增强算法的能力。本文将详细介绍这种方法的原理,并提供相应的源代码。

一、ODConv:目标感知卷积

ODConv(Object Detection Convolution)是一种特殊的卷积操作,旨在增强网络对目标的感知能力。它通过在卷积核中引入目标信息,使得网络能够更好地理解目标的特征,并提高对小目标的检测准确度。

下面是ODConv的源代码实现:

import torch
import torch.nn as nn

class ODConv(nn.Module):
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值