目标检测是计算机视觉领域的重要任务之一,而对于小目标的准确检测一直是一个具有挑战性的问题。为了提升YOLOv8算法在小目标检测上的性能,研究人员提出了一种创新的方法,即采用ODConv和ConvNeXt结构来增强算法的能力。本文将详细介绍这种方法的原理,并提供相应的源代码。
一、ODConv:目标感知卷积
ODConv(Object Detection Convolution)是一种特殊的卷积操作,旨在增强网络对目标的感知能力。它通过在卷积核中引入目标信息,使得网络能够更好地理解目标的特征,并提高对小目标的检测准确度。
下面是ODConv的源代码实现:
import torch
import torch.nn as nn
class ODConv(nn.Module):