图文证明 牛顿-莱布尼茨公式

牛顿-莱布尼茨公式

牛顿-莱布尼茨公式是微积分中的基本定理之一,它描述了函数的导数和不定积分之间的关系。
该公式通常用来计算定积分。设函数f(x)在区间[a, b]上连续,且F(x)是f(x)在该区间上的一个原函数
即F’(x) = f(x)。则牛顿-莱布尼茨公式表示为:
∫ a b f ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \,dx = F(b) - F(a) abf(x)dx=F(b)F(a)

这个公式描述的就是 F(b)-F(a) , 等于下方的面积

在这里插入图片描述
下面开始证明:

第一步 F(x)与f(x)联系

任意在F(X) 上找段变化的区域,如下图:
在这里插入图片描述
拉格朗日中值定理得:
△ ( x ) 区域上必然有一个点切线的斜率等于 tan ⁡ ( α ) \bigtriangleup(x) \hspace{0.5cm}区域上必然有一个点切线的斜率等于 \hspace{0.5cm}\tan(\alpha) (x)区域上必然有一个点切线的斜率等于tan(α)

所以可以得出 △ ( y ) = △ ( x ) ∗ f ( n ) \bigtriangleup(y) = \bigtriangleup(x)*f(n) (y)=(x)f(n)

在这里插入图片描述
所以有下图:
在这里插入图片描述
当我们取更多的
在这里插入图片描述

但这显然还没有证完

第二步 取的更密

取的更密之后,我们发现面积的组成,越来越解决贴合在这里插入图片描述
所以我们就可以在其中取无数的点,让其直接贴合
在这里插入图片描述
那我们怎么把这么多的面积和表示为这个呢 ? ∫ a b f ( x )   d x 那我们怎么把这么多的面积和表示为这个呢?\\ \int_{a}^{b} f(x) \,dx 那我们怎么把这么多的面积和表示为这个呢?abf(x)dx

对变化量 △ ( x ) , △ ( y ) 都任意大小的拆为 n 份 , 然后显然展开得下图 : 对变化量\bigtriangleup(x),\bigtriangleup(y)都任意大小的拆为n份,然后显然展开得下图: 对变化量(x),(y)都任意大小的拆为n,然后显然展开得下图:
在这里插入图片描述
最后通过黎曼和可以推出
F ( b ) − F ( a ) = ∫ a b f ( x )   d x F(b) - F(a) = \int_{a}^{b} f(x) \,dx F(b)F(a)=abf(x)dx

使用定理:

拉格朗日中值定理
黎曼和

参考视频B站

<think>我们被要求搜索关于高等数学中导数和微积分的基础概念和学习资料。需要整合网络搜索的结果,生成详细清晰的回答,并遵循特定的格式要求。 由于不能使用第一人称,我们将以客观的方式呈现信息。回答需要组织为多个方法或步骤,并在每个步骤间换行。 同时,在最后必须添加相关问题部分。 步骤: 1. 使用网络搜索工具检索关于导数和微积分的基础概念以及学习资料。 2. 整合检索到的信息,形成有条理的回答。 根据搜索,我们可以将回答分为两个主要部分: 第一部分:导数和微积分的基础概念 第二部分:推荐的学习资料(书籍、在线课程、网站等) 注意:避免使用步骤词汇,所以我们将使用小标题或直接分点(但要求是多个方法或步骤,且换行)。我们可以用加粗或者序号?但要求是“方法或步骤”,且不能使用“首先”、“然后”等词。我们可以用分点的方式,但不用步骤词,而是直接描述。 然而,要求中并没有禁止使用序号,但要求“组织为多个方法或步骤”,所以我们可以用数字序号,但避免使用步骤词汇。同时,每个步骤间换行。 另外,如果回答中包含公式,必须按照格式要求。 第一部分:基础概念 导数:导数表示函数在某一点处的变化率,即函数值随自变量变化的快慢程度。导数的定义是函数增量与自变量增量比值的极限。 导数的定义公式:$$ f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} $$ 微分:微分是函数在某一点处的线性近似,即函数值改变量的主要部分。微分与导数密切相关,函数y=f(x)的微分dy可以表示为:$$ dy = f'(x) dx $$ 积分:积分是微分的逆运算,分为不定积分和定积分。不定积分是求原函数的过程,定积分是求函数在某个区间上的积分值,表示曲边梯形的面积。 不定积分:$$ \int f(x) dx = F(x) + C $$ 定积分:$$ \int_a^b f(x) dx = F(b) - F(a) $$ 第二部分:学习资料 根据网络搜索,推荐以下资源: 1. 经典教材: - 《高等数学》(同济大学数学系编):国内广泛使用的教材,内容系统,例题丰富。 - 《微积分学教程》(菲赫金哥尔茨):内容深入,适合深入理解。 - 《托马斯微积分》:国际经典教材,讲解详细,图文并茂。 2. 在线课程: - 中国大学MOOC(慕课):搜索“高等数学”或“微积分”,有多个高校的课程,如同济大学、西安交通大学等。 - Khan Academy(可汗学院):提供免费的微积分入门到高级课程,讲解清晰。 - MIT OpenCourseWare:MIT的开放课程,有微积分课程视频和讲义。 3. 学习网站: - Wolfram Alpha:可以计算导数和积分,并展示步骤。 - Desmos:图形计算器,可视化函数及其导数、积分。 - 知乎、B站:有许多学习经验和视频教程。 注意:我们不需要在回答中引用具体的网址,因为要求不能集中引用,而且我们不需要列出引用来源。但是我们可以提到这些资源的名称。 按照要求,我们将组织回答如下: 第一部分:导数和微积分基础概念 导数的概念: 导数描述函数在某点处的瞬时变化率。定义如下: $$ f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} $$ 几何意义是函数图像在该点切线的斜率。 微分的概念: 微分是函数改变量的线性主部。当自变量有微小改变量$dx$时,函数改变量$\Delta y$可以近似表示为: $$ \Delta y \approx dy = f'(x) dx $$ 其中$dy$称为函数在$x$处的微分。 积分的概念: 积分包括不定积分和定积分。 不定积分是求导的逆运算,得到原函数族: $$ \int f(x) dx = F(x) + C $$ 其中$C$为任意常数。 定积分表示函数在区间$[a, b]$上的积分和极限,计算公式为: $$ \int_a^b f(x) dx = F(b) - F(a) $$ 其中$F(x)$是$f(x)$的一个原函数。 第二部分:推荐学习资料 经典教材: 《高等数学》(同济大学数学系编)内容系统,例题丰富,适合初学者。 《微积分学教程》(菲赫金哥尔茨)内容深入,适合深入理解。 《托马斯微积分》讲解详细,图文并茂,适合自学。 在线课程: 中国大学MOOC平台提供多个高校的高等数学课程,如同济大学、西安交通大学等。 Khan Academy(可汗学院)提供免费微积分课程,从入门到高级。 MIT OpenCourseWare提供MIT的微积分课程资源,包括讲义和视频。 学习工具与网站: Wolfram Alpha可用于计算导数和积分,并展示计算步骤。 Desmos图形计算器可可视化函数及其导数、积分的图形。 知乎和B站有大量学习经验分享和视频教程。 最后,按照要求添加相关问题部分。 注意:相关问题必须基于用户的问题和我们的回答。我们可以提出以下问题: 1. 导数和微分有什么区别和联系? 2. 如何计算常见函数的导数和积分? 3. 定积分有哪些应用? 或者: 1. 导数的四则运算法则是什么? 2. 微积分基本定理的内容是什么? 3. 有哪些常用的积分技巧? 我们选择与基础概念和进一步学习相关的问题。 因此,相关问题部分: §§相关问题§§: 1. 导数和微分有什么区别和联系? 2. 如何计算常见函数的导数和积分? 3. 定积分有哪些实际应用? 注意:标题必须严格按照"§§相关问题§§:"(含冒号)在同一行,然后每个问题用数字标号。 现在,整合以上内容,形成最终回答。</think>### 导数和微积分基础概念 **导数的定义** 导数描述函数在某点处的瞬时变化率。设函数 $y=f(x)$,在点 $x_0$ 处的导数定义为极限: $$ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} $$ 几何意义是曲线在该点切线的斜率。 **微分的核心思想** 微分表示函数值的微小变化量,是导数的线性近似: $$ dy = f'(x) \cdot dx $$ 其中 $dx$ 是自变量的微小增量,$dy$ 是因变量的近似改变量。 **积分的基本类型** - **不定积分**:求导的逆运算,得到原函数族: $$ \int f(x) \, dx = F(x) + C $$ $C$ 为任意常数。 - **定积分**:计算曲线下的面积,通过牛顿-莱布尼茨公式求解: $$ \int_a^b f(x) \, dx = F(b) - F(a) $$ $F(x)$ 是 $f(x)$ 的原函数。 **核心定理** 微积分基本定理连接导数与积分: $$ \frac{d}{dx} \left( \int_a^x f(t) \, dt \right) = f(x) $$ --- ### 推荐学习资料 **经典教材** 1. **《高等数学》(同济大学版)**:国内权威教材,概念讲解系统,例题丰富。 2. **《托马斯微积分》**:国际经典教材,图文结合直观,适合自学。 3. **《微积分学教程》(菲赫金哥尔茨)**:深入严谨,适合进阶学习。 **在线课程** - **中国大学MOOC**:搜索“同济大学高等数学”或“西安交通大学微积分”,提供免费系统课程。 - **Khan Academy**:英文微积分课程(含中文字幕),从基础到应用全覆盖。 - **MIT OpenCourseWare**:MIT公开课《单变量微积分》,配套讲义和习题。 **工具与网站** - **Desmos图形计算器**:可视化函数、导数与积分图像(官网免费使用)。 - **Wolfram Alpha**:输入函数自动计算导数/积分并展示步骤(支持自然语言)。 - **B站专栏**:搜索“3Blue1Brown微积分的本质”动画讲解,直观理解核心思想。 **学习建议** 从函数极限过渡到导数定义,再延伸至微分和积分。 结合图形工具验证计算结果,例如用Desmos绘制 $f(x)=x^2$ 及其导数 $f'(x)=2x$ 的曲线。 练习基础题型: ```python # 示例:Python计算导数(符号计算库) from sympy import * x = symbols('x') f = x**3 + sin(x) derivative = diff(f, x) # 输出:3*x**2 + cos(x) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值