1. 两个重要极限
(1) limx→0sinxx=1\lim _{x \rightarrow 0} \frac{\sin x}{x}=1limx→0xsinx=1, 推广形式 limf(x)→0sinf(x)f(x)=1\lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1limf(x)→0f(x)sinf(x)=1.
(2) limx→∞(1+1x)x=e\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e}limx→∞(1+x1)x=e, 推广形式 limx→0(1+x)1x=e,limf(x)→∞[1+1f(x)]f(x)=e\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e}limx→0(1+x)x1=e,limf(x)→∞[1+f(x)1]f(x)=e
2. 常用的等价无穷小量及极限公式
(1) 当 x→0x \rightarrow 0x→0 时,常用的等价无穷小
- (1) x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^x-1x∼sinx∼tanx∼arcsinx∼arctanx∼ln(1+x)∼ex−1.
- (2) 1−cosx∼12x2,1−cosbx∼b2x2(b≠0)1-\cos x \sim \frac{1}{2} x^2, 1-\cos ^b x \sim \frac{b}{2} x^2(b \neq 0)1−cosx∼21x2,1−cosbx∼2bx2(b=0).
- (3) ax−1∼xlna(a>0a^x-1 \sim x \ln a(a>0ax−1∼xlna(a>0, 且 a≠1)a \neq 1)a=1).
- (4) (1+x)α−1∼αx(α≠0)(1+x)^\alpha-1 \sim \alpha x (\alpha \neq 0)(1+x)α−1∼αx(α=0).
(2) 当 n→∞n \rightarrow \inftyn→∞ 或 x→∞x \rightarrow \inftyx→∞ 时,常用的极限公式
- (1) limn→∞nn=1,limn→∞an=1(a>0)\lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0)limn→∞nn=1,limn→∞na=1(a>0).
- (2) limx→∞anxn+an−1xn−1+⋯+a1x+a0bmxm+bm−1xm−1+⋯+b1x+b0={anbm,n=m,0,n<m,∞,n>m,\lim _{x \rightarrow \infty} \frac{a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+\cdots+b_1 x+b_0}=\left\{\begin{array}{ll}\frac{a_n}{b_m}, & n=m, \\ 0, & n<m, \\ \infty, & n>m,\end{array}\right.limx→∞bmxm+bm−1xm−1+⋯+b1x+b0anxn+an−1xn−1+⋯+a1x+a0=⎩⎨⎧bman,0,∞,n=m,n<m,n>m, 其中 an,bma_n, b_man,bm 均不
为 0 .
- (3) limn→∞xn={0,∣x∣<1,∞,∣x∣>1,1,x=1, 不存在, x=−1;limn→∞enx={0,x<0,+∞,x>0,1,x=0.\lim _{n \rightarrow \infty} x^n=\left\{\begin{array}{ll}0, & |x|<1, \\ \infty, & |x|>1, \\ 1, & x=1, \\ \text { 不存在, } & x=-1 ;\end{array} \lim _{n \rightarrow \infty} \mathrm{e}^{n x}= \begin{cases}0, & x<0, \\ +\infty, & x>0, \\ 1, & x=0 .\end{cases}\right.limn→∞xn=⎩⎨⎧0,∞,1, 不存在, ∣x∣<1,∣x∣>1,x=1,x=−1;limn→∞enx=⎩⎨⎧0,+∞,1,x<0,x>0,x=0.
- (4) 若 limg(x)=0,limf(x)=∞\lim g(x)=0, \lim f(x)=\inftylimg(x)=0,limf(x)=∞, 且 limg(x)f(x)=A\lim g(x) f(x)=Alimg(x)f(x)=A, 则有
lim[1+g(x)]f(x)=eA. \lim [1+g(x)]^{f(x)}=\mathrm{e}^A . lim[1+g(x)]f(x)=eA.
3. x→0x \rightarrow 0x→0 时常见的麦克劳林公式
sinx=x−13!x3+o(x3),cosx=1−12!x2+14!x4+o(x4),tanx=x+13x3+o(x3),arcsinx=x+13!x3+o(x3),arctanx=x−13x3+o(x3),ln(1+x)=x−12x2+13x3+o(x3),ex=1+x+12!x2+13!x3+o(x3),(1+x)a=1+ax+a(a−1)2!x2+o(x2). \begin{aligned} & \sin x=x-\frac{1}{3 !} x^3+o\left(x^3\right), \quad \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4+o\left(x^4\right),\\ \\ & \tan x=x+\frac{1}{3} x^3+o\left(x^3\right), \quad \arcsin x=x+\frac{1}{3 !} x^3+o\left(x^3\right), \\ \\ & \arctan x=x-\frac{1}{3} x^3+o\left(x^3\right), \quad \ln (1+x)=x-\frac{1}{2} x^2+\frac{1}{3} x^3+o\left(x^3\right), \\ \\ & \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+o\left(x^3\right),(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+o\left(x^2\right) . \end{aligned} sinx=x−3!1x3+o(x3),cosx=1−2!1x2+4!1x4+o(x4),tanx=x+31x3+o(x3),arcsinx=x+3!1x3+o(x3),arctanx=x−31x3+o(x3),ln(1+x)=x−21x2+31x3+o(x3),ex=1+x+2!1x2+3!1x3+o(x3),(1+x)a=1+ax+2!a(a−1)x2+o(x2).
当 x→0x \rightarrow 0x→0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:
x−sinx∼x36,tanx−x∼x33,x−ln(1+x)∼x22x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2}x−sinx∼6x3,tanx−x∼3x3,x−ln(1+x)∼2x2, arcsinx−x∼x36,x−arctanx∼x33\arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3}arcsinx−x∼6x3,x−arctanx∼3x3.
4. 基本导数公式
(xμ)′=μxμ−1(μ为常数),(ax)′=axlna(a>0,a≠1),(logax)′=1xlna(a>0,a≠1),(lnx)′=1x,(sinx)′=cosx,(cosx)′=−sinx,(arcsinx)′=11−x2,(arccosx)′=−11−x2,(tanx)′=sec2x,(cotx)′=−csc2x,(arctanx)′=11+x2,(arccotx)′=−11+x2,(secx)′=secxtanx,(cscx)′=−cscxcotx,[ln(x+x2+1)]′=1x2+1,,[ln(x+x2−1)]′=1x2−1
\begin{array}{ll}
\left(x^\mu\right)^{\prime}=\mu x^{\mu-1} ( \mu 为常数), & \left(a^x\right)^{\prime}=a^x \ln a(a>0, a \neq 1), \\ \\
\left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1) , & (\ln x)^{\prime}=\frac{1}{x}, \\ \\
(\sin x)^{\prime}=\cos x, & (\cos x)^{\prime}=-\sin x, \\ \\
(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^2}}, & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^2}}, \\ \\
(\tan x)^{\prime}=\sec ^2 x, & (\cot x)^{\prime}=-\csc ^2 x, \\ \\
(\arctan x)^{\prime}=\frac{1}{1+x^2}, & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^2}, \\ \\
(\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x, \\ \\
{\left[\ln \left(x+\sqrt{x^2+1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},}, & {\left[\ln \left(x+\sqrt{x^2-1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2-1}}}
\end{array}
(xμ)′=μxμ−1(μ为常数),(logax)′=xlna1(a>0,a=1),(sinx)′=cosx,(arcsinx)′=1−x21,(tanx)′=sec2x,(arctanx)′=1+x21,(secx)′=secxtanx,[ln(x+x2+1)]′=x2+11,,(ax)′=axlna(a>0,a=1),(lnx)′=x1,(cosx)′=−sinx,(arccosx)′=−1−x21,(cotx)′=−csc2x,(arccotx)′=−1+x21,(cscx)′=−cscxcotx,[ln(x+x2−1)]′=x2−11
三角函数六边形记忆法:
注: 变限积分求导公式.
设 F(x)=∫φ2(x)φ1(x)f(t)dtF(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} tF(x)=∫φ2(x)φ1(x)f(t)dt, 其中 f(x)f(x)f(x) 在 [a,b][a, b][a,b] 上连续, 可导函数 φ1(x)\varphi_1(x)φ1(x) 和 φ2(x)\varphi_2(x)φ2(x) 的值域在 [a,b][a, b][a,b] 上, 则在函数 φ1(x)\varphi_1(x)φ1(x) 和 φ2(x)\varphi_2(x)φ2(x) 的公共定义域上有:
F′(x)=ddx[∫φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2′(x)−f[φ1(x)]φ1′(x).
F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) .
F′(x)=dxd[∫φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2′(x)−f[φ1(x)]φ1′(x).
5. 几个重要函数的麦克劳林展开式
(1) ex=1+x+12!x2+⋯+1n!xn+o(xn)\mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right)ex=1+x+2!1x2+⋯+n!1xn+o(xn).
(2) sinx=x−13!x3+⋯+(−1)n1(2n+1)!x2n+1+o(x2n+1)\sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right)sinx=x−3!1x3+⋯+(−1)n(2n+1)!1x2n+1+o(x2n+1).
(3) cosx=1−12!x2+14!x4−⋯+(−1)n1(2n)!x2n+o(x2n)\cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right)cosx=1−2!1x2+4!1x4−⋯+(−1)n(2n)!1x2n+o(x2n).
(4) 11−x=1+x+x2+⋯+xn+o(xn),∣x∣<1\frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|<11−x1=1+x+x2+⋯+xn+o(xn),∣x∣<1.
(5) 11+x=1−x+x2−⋯+(−1)nxn+o(xn),∣x∣<1\frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+o\left(x^n\right),|x|<11+x1=1−x+x2−⋯+(−1)nxn+o(xn),∣x∣<1.
(6) ln(1+x)=x−x22+x33−⋯+(−1)n−1xnn+o(xn),−1<x⩽1\ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1} \frac{x^n}{n}+o\left(x^n\right),-1<x \leqslant 1ln(1+x)=x−2x2+3x3−⋯+(−1)n−1nxn+o(xn),−1<x⩽1.
(7) (1+x)a=1+ax+a(a−1)2!x2+⋯+a(a−1)⋯(a−n+1)n!xn+(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^n+(1+x)a=1+ax+2!a(a−1)x2+⋯+n!a(a−1)⋯(a−n+1)xn+ o(xn)o\left(x^n\right)o(xn).
6. 曲率和曲率半径计算公式
(1) 曲率
- (1) (非参数方程) 曲线 y=f(x)y=f(x)y=f(x) 上任意一点 (x,f(x))(x, f(x))(x,f(x)) 处的曲率为
K=∣y′′∣[1+(y′)2]32. K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^2\right]^{\frac{3}{2}}} \text {. } K=[1+(y′)2]23∣y′′∣. - (2) (参数方程) {x=x(t),y=y(t)\left\{\begin{array}{l}x=x(t), \\ y=y(t)\end{array}\right.{x=x(t),y=y(t) 上任意一点的曲率为
K=∣x′(t)y′′(t)−y′(t)x′′(t)∣{[x′(t)]2+[y′(t)]2}32. K=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left\{\left[x^{\prime}(t)\right]^2+\left[y^{\prime}(t)\right]^2\right\}^{\frac{3}{2}}} . K={[x′(t)]2+[y′(t)]2}23∣x′(t)y′′(t)−y′(t)x′′(t)∣.
参数方程求导:
参数方程 {x=φ(t)y=ψ(t)\left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right.{x=φ(t)y=ψ(t)
dydx=dy/dtdx/dt=ψ′(t)φ′(t),令其为F(t),
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)},令其为F(t),\\
dxdy=dx/dtdy/dt=φ′(t)ψ′(t),令其为F(t),
d2ydx2=d(dydx)dx=d(dydx)/dtdx/dt=ψ′′(t)φ′(t)−ψ′(t)φ′′(t)[φ′(t)]3=d(F(t))/dtdx/dt=F′(t)φ′(t)
\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d\left(\frac{d y}{d x}\right) / d t}{d x / d t}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} = \frac{d(F(t))/dt}{dx/dt} = \frac{F^{\prime}(t)}{\varphi^{\prime}(t)}
dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ′(t)]3ψ′′(t)φ′(t)−ψ′(t)φ′′(t)=dx/dtd(F(t))/dt=φ′(t)F′(t)
可以记最后那个简单的式子
(2) 曲率半径
R=1K(K≠0)
R=\frac{1}{K}(K \neq 0)
R=K1(K=0)