PyTorch入门学习 10-梯度计算2,不支持张量对张量的求导,它只支持标量对张量的求导

本文介绍了深度学习中标量和张量的概念,强调了标量与张量在求导操作中的区别。张量对张量求导在PyTorch中不直接支持,仅能处理标量对张量的求导。通过实例演示了如何通过计算张量的平均值将其转换为标量进行求导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标量(Scalar):

标量是一个单独的数,它没有方向,只有大小。

在深度学习中,标量通常表示一个单独的数值,例如温度、长度或重量等。

张量(Tensor):

张量是超过二维的数组,可以表示多维数据。

在深度学习中,张量通常用于表示多维数据或特征张量等。

举例说明

x = 1 标量
x = torch.tensor([[1.0, 1.0], [1.0, 1.0]], requires_grad=True)  张量,即
y = x + 2 对张量x每个元素都+2,返回的y依然是张量
y = x.sum() 或 y = x.mean() 对张量x每个元素求总和或平均值,返回的y是标量,即一个数字

求导:

求导 d(out)/dx,首先 x 肯定是张量,如果out也是张量,会报错。需要把 out 处理成标量(数字)

一、张量对张量求导,报错

代码

import torch

x = torch.tensor([[1.0, 1.0], [1.0, 1.0]], requires_grad=True) # 定义一个张量,需要求导。里面分别为x1, x2, x3, x4
y = x + 2 # y依然是张量
z = y * y * 3 # z依然是张量
z.backward() # 此处会报错,dz/dx,因为z不是标量,而是一个张量(矩阵)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半缘修道半缘君丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值