概率论:数字特征与极限定理——数学期望

这篇博客深入探讨了数学期望的概念,强调了只有收敛的随机变量才有期望。通过泰勒展开解释了e^x的无穷级数,并展示了如何巧妙利用求和方法。博客中列举了离散分布如二项分布的期望计算,以及均匀分布和正态分布等连续分布的期望。此外,还介绍了如何求解复合分布的期望。总结了X+Y的期望等于X和Y的期望之和这一重要性质。内容适合对概率论和统计学感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学期望就是一种平均。

收敛的才有期望。

接下来我们来球一些常见的分布的期望:

 

e^x=1+x/1+x^2/2····,泰勒展开。

注意这个是无穷无尽的。

这里使用了一个很巧妙地求和方法。敏锐地发现了k(1-p)^k-1可以变成(1-p)^k的导数,而这个原函数求和是很简单的。从结果可以看出,当概率为1是平均值要一次就可以了达到了,当概率变小时平均达到的次数就要增加。

这些都要作为结论记住。

离散的知道了,那连续的呢?:

接下来是几个例子:

均匀分布,平均值在正中间,很合理呀。

 te-t怎么积分?-(t+1)e-t求导等于te-t.

正态分布是对称的,结果期望是原本的平均值很合理吧。

现在连续的我也知道了,那要是间接的g(x)要求期望怎么办?:

这个很好理解嘛。F(x)=|f(x)dx,E(x)=|f(x)*|x|dx.F(z)=||f(x,y)dxdy,那E(z)=||f(x,y)*|z|dxdy,|z|=|g(x,y)|,这样就可以了。

在这些例子之后,相信也可以发现一些规律:

(3)很好理解,X,Y的和的平均值等于X平均值加上Y的平均值,很合理吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值