Machine_Learning(第七章)

本文深入探讨了Logistic回归模型,包括其假设函数、决策边界、代价函数及梯度下降算法。同时,针对多分类问题和过拟合现象,介绍了正则化技术的应用,确保模型既能有效拟合数据又不过于复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

logistic 回归

假设函数
在这里插入图片描述
决策边界:假设本身和参数的属性,不是训练集的属性
在这里插入图片描述
代价函数
在这里插入图片描述
简化的代价函数
在这里插入图片描述
梯度下降算法
在这里插入图片描述
多分类问题
在这里插入图片描述

欠拟合:没有很好的拟合训练数据
过拟合:假设函数能拟合几乎所有数据,但函数可能太过庞大,变量太多

在这里插入图片描述
正则化:避免过拟合
在这里插入图片描述
线性回归的正则化
正则化梯度下降
在这里插入图片描述
正则化正规方程
在这里插入图片描述
逻辑回归的正则化
正则化梯度下降
在这里插入图片描述

关于fminunc函数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值