优质GAN模型专栏目录

前言

生成对抗网络(GANs, Generative Adversarial Networks)是一种深度学习架构,由生成器(Generator)和判别器(Discriminator)组成,通常用于生成逼真的数据(如图像、视频、音频等)。GANs 在多个领域中得到了广泛的应用,且其优点也使得它在很多场景中表现出色。

·GAN的优点包括生成高质量数据、无监督学习、数据增强、灵活性和适应性、高效的表示学习、创新的生成能力、对抗训练的鲁棒性

该专栏主要利用Pytorch框架复现关于图像生成的GAN模型系列论文代码。目前包括的内容有关于图像超分辨率、低数据集样本图像生成等方面的作品。

代码使用教程链接:CSDN专栏关于生成对抗网络GAN的代码使用教程_哔哩哔哩_bilibili


该专栏下的每篇文章主要由以下几个部分构成:

  • 文章简介
  • 论文题目
  • 来源
  • 摘要
  • 模型结构与创新设计
  • 损失计算
  • 训练自己数据集的代码

文章分类

超分辨率篇、损失函数篇、特殊场景应用篇、新结构设计以及暂未分类的篇章。


入门指南

生成对抗网络(GANs)入门介绍指南:让AI学会“创造“的魔法(一)
生成对抗网络(GANs)入门介绍指南:让AI学会“创造“的魔法(二)【深入版】
 


常见问题

模式奔溃

GAN模式奔溃的探讨论文综述(一)


评估指标

PSNR

IS

SSIM

MAE

CMMD


超分辨率

ISRGAN高分辨率图像生成训练自己的低分辨率图像

结合对抗、均方、感知三种损失以及对称卷积神经网络来实现超分辨率重建

SRGAN+CBAM的结构设计实现超分辨率

对称卷积神经网络结构实现超分辨率

GAN+ECA注意力机制实现图像超分辨率重建


损失函数

利用特征分布的差异来指导GAN的训练

一种基于扰动卷积层和梯度归一化的生成对抗网络

LSGAN中结合重建损失

 GAN-C约束鉴别器训练自己的数据集

利用推土机距离与梯度惩罚在ACGAN中训练

对GAN的交替优化

粒子群优化算法在GAN中的应用

在训练图像和生成器之间建立逻辑和互惠的损失函数来训练GAN模型

混合成员GAN训练自己的数据集

最小二乘梯度归一化设计

一种基于最小二乘生成对抗网络的图像去噪算法

SPGAN: 相似性损失


特殊场景应用 

三元DCGAN生成RGB图像用于红外图像着色生成

基于最小二乘生成对抗网络的快速电磁超表面单元设计

基于多尺度融合生成对抗网络的水下图像增强

浑浊水下图像增强

结合mobilenetV2和FPN的GAN去雾算法

促进恶意软件图像合成GAN

FSGAN实现少样本视网膜血管分割

利用深度残差GAN做运动图像的去模糊


 新结构设计

利用多生成器来预防模式崩溃

一种基于扰动卷积层和梯度归一化的生成对抗网络

融合注意力机制和残差结构的EIGGAN

独立训练两个GAN来覆盖原始数据分布的不同部分

在鉴别器的输入中结合MHA来对少样本有更多注意

CHAIN(设计了一种归一化方法应用在了鉴别器上)


风格迁移

CLIPstyle文生图风格迁移生成自己描述的风格图


序列信息

基于GAN+序列后向选择的情绪识别增强方法
 


低照度图像增强

LLGAN:低光照图像增强方法

EnlightenGAN:低照度图像增强


文本生成图像

HDGAN

StackGAN(堆叠生成对抗网络

StoryGAN


图像修复

WGAN+U-Net架构实现图像修复

SCGAN实现人脸修复

普通GAN的人脸修复_dcgan人脸修复

BCGAN实现双生成器架构的人脸面部生成

EPGAN:融合高效注意力的生成对抗网络图像修复算法


通用设计篇

适用于低数据领域问题的EVAGAN网络

其他模型

DDPM扩散模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值