前言
生成对抗网络(GANs, Generative Adversarial Networks)是一种深度学习架构,由生成器(Generator)和判别器(Discriminator)组成,通常用于生成逼真的数据(如图像、视频、音频等)。GANs 在多个领域中得到了广泛的应用,且其优点也使得它在很多场景中表现出色。
·GAN的优点包括生成高质量数据、无监督学习、数据增强、灵活性和适应性、高效的表示学习、创新的生成能力、对抗训练的鲁棒性
该专栏主要利用Pytorch框架复现关于图像生成的GAN模型系列论文代码。目前包括的内容有关于图像超分辨率、低数据集样本图像生成等方面的作品。
代码使用教程链接:CSDN专栏关于生成对抗网络GAN的代码使用教程_哔哩哔哩_bilibili
该专栏下的每篇文章主要由以下几个部分构成:
- 文章简介
- 论文题目
- 来源
- 摘要
- 模型结构与创新设计
- 损失计算
- 训练自己数据集的代码
文章分类
超分辨率篇、损失函数篇、特殊场景应用篇、新结构设计以及暂未分类的篇章。
入门指南
生成对抗网络(GANs)入门介绍指南:让AI学会“创造“的魔法(一)
生成对抗网络(GANs)入门介绍指南:让AI学会“创造“的魔法(二)【深入版】
常见问题
模式奔溃
评估指标
超分辨率
结合对抗、均方、感知三种损失以及对称卷积神经网络来实现超分辨率重建
损失函数
在训练图像和生成器之间建立逻辑和互惠的损失函数来训练GAN模型