PyTorch深度学习实战(24)——使用U-Net架构进行图像分割
0. 前言
图像分割 (Image segmentation
) 是计算机视觉领域中的一个重要任务,旨在将图像划分为具有语义信息的不同区域或对象。与目标检测任务不同,图像分割要求像素级别的精确定位和分类,将每个像素标记为属于哪个类别或属于哪个区域。图像分割方法有很多种,包括传统的基于阈值、边缘检测、区域生长等方法,以及现代的基于深度学习的方法,如全卷积网络、U-Net
、Mask R-CNN
,利用深度神经网络的强大表征能力,能够对图像进行更准确和精细的分割。在本节中,我们将介绍图像分割的基本概念,并训练一个基于 U-Net
架构的图像分割模型。
1. 图像分割
1.1 基本概念
图像分割是计算机视觉领域中的一项重要技术,它可以将一张图像分成若干个部分,并给每个部分打上标记,以预测像素所对应于对象,将图像中的像素分配到不同的区域或对象中。
在使用目标检测模型预测对象的类别及其边界框时,图像通过神经网络传递,经过展平层后,在全连接网络中预测类别和边界框偏移。而在图像分割中,输出形状与输入图像的形状相同,将卷积的输出展平后重建图像可能会导致图像信息丢失。此外,在图像分割中,原始图像中的轮廓和形状在输出图像中不会发生变化,因此使用带全连接层的网络对于图像分割而言并非最优模型。
在进行图像分割时,需要注意以下两个方面:
- 原始图像中目标对象的形状和结构在图像分割输出结果中保持不变
- 由于输入和输出结果均